Sperm Kinematics and Morphology of Bali Bull (Bos javanicus) after Freezing and Thawing Treated with Green Tea Extract in Extender
Abstract
Green Tea Extract, or GTE, is a powerful antioxidant that can be added to the extender to maintain the quality of Bali bull semen before and after freezing. This study aimed to evaluate the impact of the GTE addition in the extender on the sperm kinematic and sperm morphology from frozen semen of Bali bull. Five Bali bulls from the NAIC, were used as semen sources. In this study, there were four different treatments: a control (Tris-egg yolk without GTE), a GTE0.05 (100 mL tris egg yolk with 0.05 mg of GTE), a GTE0.10 (100 mL tris egg yolk with 0.10 mg of GTE), and a GTE0.15 (100 mL tris egg yolk with 0.15 mg of GTE). A sperm analyzer (CASA) was used to observe the sperm kinematics and morphology. Compared to the control group, adding different concentrations of GTE to the semen extender did not affect the sperm’s morphology. Before freezing, adding GTE0.05 increases total and progressive motility as well as VAP, VCL, and VSL after thawing. GTE0.15 increases STR and ALH. The conclusion is that GTE additions at doses of 0.05 mg/100 mL and 0.15 mg/100 mL can increase sperm kinematics parameters, but sperm morphology is not affected by the GTE.
References
Alqawasmeh, O., M. Zhao, C. Chan, M. Leung, K. Chow, N. Agarwal, J. S. Mak, C. C. Wang, C. P. Pang, T. C. Li, & W. K. Chu. 2021. Green tea extract as a cryoprotectant additive to preserve the motility and DNA integrity of human spermatozoa. Asian J. Androl. 23:150. https://doi.org/10.4103/aja.aja_58_20
Amann, R. P. & D. Waberski. 2014. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 81:5-17. https://doi.org/10.1016/j.theriogenology.2013.09.004
Anel-López, L., O. Garcia-Alvarez, A. Maroto-Morales, M. Iniesta-Cuerda, M. Ramón, A. J. Soler, M. R. Fernández-Santos, & J. J. Garde. 2015. Reduced glutathione addition improves both the kinematics and physiological quality of post-thawed red deer sperm. Anim. Reprod. Sci. 162:73–79. https://doi.org/10.1016/j.anireprosci.2015.09.012
Avdatek, F., D. Yeni, M. E. İnanç, B. Çil, B. P. Tuncer, R. Türkmen, & U. Taşdemir. 2018. Supplementation of quercetin for advanced DNA integrity in bull semen cryopreservation. Andrologia 50. https://doi.org/10.1111/and.12975
Bansal, A. K. & G. S. Bilaspuri. 2011. Impacts of oxidative stress and antioxidants on semen functions. Vet. Med. Int. 2011:1–7. https://doi.org/10.4061/2011/686137
Barbas, J. P., T. Leahy, A. E. Horta, & M. García-Herreros. 2018. Sperm kinematics and subpopulational responses during the cryopreservation process in caprine ejaculates. Cryobiology 82:137–147. https://doi.org/10.1016/j.cryobiol.2018.03.005
Bernecic, N. C., B. M. Gadella, T. Leahy, & S. P. De Graaf. 2019. Novel methods to detect capacitation-related changes in spermatozoa. Theriogenology 137:56–66. https://doi.org/10.1016/j.theriogenology.2019.05.038
Bollwein, H. & L. Bittner. 2018. Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Anim. Reprod. 15:703–710. https://doi.org/10.21451/1984-3143-AR2018-0041
Bucak, M. N., S. Sarıözkan, P. B. Tuncer, P. A. Ulutaş, & H. I. Akçadağ. 2009. Effect of antioxidants on microscopic semen parameters, lipid peroxidation and antioxidant activities in Angora goat semen following cryopreservation. Small Rumin. Res. 81:90–95. https://doi.org/10.1016/j.smallrumres.2008.11.011
Chen, X., T. Chen, J. Sun, J. Luo, J. Liu, B. Zeng, Y. Zhang, & Q. Xi. 2019. Lower methionine/cystine ratio in low‐protein diet improves animal reproductive performance by modulating methionine cycle. Food Sci. Nutr. 7:2866–2874. https://doi.org/10.1002/fsn3.1128
Chowdhury, S., S. Das, T. Gupta, D. Sana, & S. Bose. 2014. Evaluation of frozen semen by a crosomal integrity and sperm concentration - two vital quality parameters of male fertility in bovines. Exploratory Animal Medical Research 4:101–107.
De Oliveira, R. A., C. A.Wolf, M. A. De Oliveira Viu, & M. L. Gambarini. 2013. Addition of glutathione to an extender for frozen equine semen. J. Equine Vet. Sci. 33:1148–1152. https://doi.org/10.1016/j.jevs.2013.05.001
Del Olmo, E., O. García-Álvarez, A. Maroto-Morales, M. Ramón, P. Jiménez-Rabadán, M. Iniesta-Cuerda, L. Anel-Lopez, F. Martinez-Pastor, A. J. Soler, J. J. Garde, & M. R. Fernández-Santos. 2016. Estrous sheep serum enables in vitro capacitation of ram spermatozoa while preventing caspase activation. Theriogenology 85:351–360. https://doi.org/10.1016/j.theriogenology.2015.09.005
Dorado, J., T. Rijsselaere, A. Muñoz-Serrano, & M. Hidalgo. 2011. Influence of sampling factors on canine sperm motility parameters measured by the sperm class analyzer. Syst. Biol. Reprod. Med. 57:318–325. https://doi.org/10.3109/19396368.2011.627081
Estrada, E., M. M. R. del Álamo, J. E. Rodríguez-Gil, & M. Yeste. 2017. The addition of reduced glutathione to cryopreservation media induces changes in the structure of motile subpopulations of frozen-thawed boar sperm. Cryobiology 78:56–64. https://doi.org/10.1016/j.cryobiol.2017.07.002
Evangelista-Vargas, S. & A. Santiani. 2017. Detection of intracellular reactive oxygen species (superoxide anion and hydrogen peroxide) and lipid peroxidation during cryopreservation of alpaca spermatozoa. Reprod. Domest. Anim. 52:819–824. https://doi.org/10.1111/rda.12984
Gadani, B., D. Bucci, M. Spinaci, C. Tamanini, & G. Galeati. 2017. Resveratrol and epigallocatechin-3-gallate addition to thawed boar sperm improves in vitro fertilization. Theriogenology 90:88–93. https://doi.org/10.1016/j.theriogenology.2016.11.020
Hezavehei, M., M. Sharafi, H. M. Kouchesfahani, R. Henkel, A. Agarwal, V. Esmaeili, & A. Shahverdi. 2018. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. Biomed. Online 37:327–339. https://doi.org/10.1016/j.rbmo.2018.05.012
Hinrichs, K. & S. C. Loux. 2012. Hyperactivated sperm motility: Are equine sperm different? J. Equine Vet. Sci. 32:441–444. https://doi.org/10.1016/j.jevs.2012.05.070
Inanç, M. E., B. Çil, D. Yeni, F. Avdatek, D. Orakçi, P. B. Tuncer, R. Türkmen, & U. Taşdemir. 2019. The effect of green tea extract supplementation in bull semen cryopreservation. Kafkas Universitesi Veteriner Fakultesi Dergisi 25:703–708.
Kandiel, M. M., A. R. El-Khawagah, & K. G. Mahmoud. 2017. Effect of epidermal growth factor on buffalo frozen spermatozoa biometry and metabolic activity. Asian Pacific Journal Reproduction 6:43–48. https://doi.org/10.12980/apjr.6.20170108
Khattak, N. B. S., H. Khan, M. T. Tunio, S. Ahmad, N. Ahmad, S. M. H. Andrabi, O. Obaidullah, I. Ali, & N.-Z Fang. 2022. Dose-Dependent effect of green tea (Camellia sinensis) extract in the post-thawed fertility indicators of frozen bovine semen extender. Pak. J. Zoology 54:647–656. https://doi.org/10.17582/journal.pjz/20181230051216
Lavara, R., J. S. Vicente, & M. Baselga. 2013. Genetic variation in head morphometry of rabbit sperm. Theriogenology 80:313–318. https://doi.org/10.1016/j.theriogenology.2013.04.015
Len, J. S., W. S. D. Koh, & S.-X Tan. 2019. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. 39:BSR20191601. https://doi.org/10.1042/BSR20191601
Mahmoudi, R., A. Azizi, S. Abedini, V. H. Jahromi, H. Abidi, M. J. Barmak, & M. J. Barmak. 2018. Green tea improves rat sperm quality and reduced cadmium chloride damage effect in spermatogenesis cycle. Journal Medicine Life 11:371–380. https://doi.org/10.25122/jml-2018-0005
Martí, J. I., I. M. Aparicio, C. L. V. Leal, & M. García-Herreros. 2012. Seasonal dynamics of sperm morphometric subpopulations and its association with sperm quality parameters in ram ejaculates. Theriogenology 78:528–541. https://doi.org/10.1016/j.theriogenology.2012.02.035
Martínez-Pastor, F., E. J. Tizado, J. J. Garde, L. Anel, & P. De Paz. 2011. Statistical series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 75:783–795. https://doi.org/10.1016/j.theriogenology.2010.11.034
Nasiri, A. H., A. Towhidi, & S. Zeinoaldini. 2012. Combined effect of DHA and α-tocopherol supplementation during bull semen cryopreservation on sperm characteristics and fatty acid composition: DHA improves sperm cryosurvival in bull. Andrologia 44:550–555. https://doi.org/10.1111/j.1439-0272.2011.01225.x
Park, S.-H. & I.-J Yu. 2017. Effect of antioxidant supplementation in freezing extender on porcine sperm viability, motility and reactive oxygen species. J. Anim. Reprod. Biotechnol. 32:9–15. https://doi.org/10.12750/JET.2017.32.1.9
Park, S.-H. & I.-J Yu. 2015. Evaluation of toxicity of green tea extract in chilled boar spermatozoa. J. Anim. Reprod. Biotechnol. 30:1–6. https://doi.org/10.12750/JET.2015.30.1.1
Pilane, C. M., M. A. Bopape, B. Ntombizodwa, & M. H. Mapeka. 2019. Buck semen does not easily succumb to oxidative stress. Open Journal Animal Sciences 09:65–75. https://doi.org/10.4236/ojas.2019.91006
Said, T. M., A. Gaglani, & A. Agarwal. 2010. Implication of apoptosis in sperm cryoinjury. Reprod. Biomed. Online 21:456–462. https://doi.org/10.1016/j.rbmo.2010.05.011
Samir, H., P. Nyametease, M. Elbadawy, K. Nagaoka, K. Sasaki, & G. Watanabe. 2020. Administration of melatonin improves testicular blood flow, circulating hormones, and semen quality in Shiba goats. Theriogenology 146:111–119. https://doi.org/10.1016/j.theriogenology.2020.01.053
Sapanidou, V., I. Taitzoglou, I. Tsakmakidis, I. Kourtzelis, D. Fletouris, A. Theodoridis, S. Lavrentiadou, S., & Tsantarliotou, M. 2016. Protective effect of crocetin on bovine spermatozoa against oxidative stress during in vitro fertilization. Andrology 4:1138–1149. https://doi.org/10.1111/andr.12248
Schenk, J. L. 2018. Review: Principles of maximizing bull semen production at genetic centers. Animal 12:s142–s147. https://doi.org/10.1017/S1751731118000472
Setiyono, A., M. A. Setiadi, E. M. Kaiin, & N. W. K. Karja. 2020. Pola gerakan spermatozoa sapi setelah diinkubasi dalam media fertilisasi dengan imbuhan heparin dan/atau kafein. Jurnal Veteriner 21:458-469.
Shojaei, H., T. Kroetsch, R. Wilde, P. Blondin, J. P. Kastelic, & J. C. Thundathil. 2012. Moribund sperm in frozen-thawed semen, and sperm motion end points post-thaw and post-swim-up, are related to fertility in Holstein AI bulls. Theriogenology 77:940–951. https://doi.org/10.1016/j.theriogenology.2011.09.026
Sinha, R., M. Bhakat, T. K. Mohanty, R. Kumar, A. Ranjan, A. Rahim, S. A. Lone, N. Shah, A. R. Paray, C. S. Patil, & A. Singh. 2021. Seasonal variation of sperm kinematics in murrah bulls under the tropical climatic condition. Buffalo Bulletin 40:87–98.
Soler, C., M. Sancho, A. García, J. Fuentes, M., Núñez, & H. Cucho. 2014. Ejaculate Fractioning effect on llama sperm head morphometry as assessed by the ISAS ® CASA system. Reprod. Domest. Anim. 49:71–78. https://doi.org/10.1111/rda.12226
Sonjaya, H., H. Hasbi, S. Gustina, & S. Farida. 2021. Selection of beef cattle type characters in Bali young bull from smallholder farms through individual control for the purpose of artificial insemination. IOP Conf. Ser. Earth Environ. Sci. 788:012149. https://doi.org/10.1088/1755-1315/788/1/012149
Susilowati, S., T. Sardjito, I. Mustofa, O. S. Widodo, & R. Kurnijasanti. 2021. Effect of green tea extract in extender of Simmental bull semen on pregnancy rate of recipients. Anim. Biosci. 34:198–204. https://doi.org/10.5713/ajas.20.0025
Swari, W. R., E. K. Sabdoningrum, W. Wurlina, S. Susilowati, R. Kurnijasanti, & E. Safitri. 2020. The effect of the addition of green tea extract (Camellia sinensis) in skim milk and egg yolk diluent for quality sapudi sheep spermatozoa preserved on cold temperatur. OVOZOA Journal Animal Reproduction 8:122-126. https://doi.org/10.20473/ovz.v8i2.2019.122-126
Tatone, C., G. Di Emidio, M. Vento, R. Ciriminna, & P. G. Artini. 2010. Cryopreservation and oxidative stress in reproductive cells. Gynecol. Endocrinol. 26:563–567. https://doi.org/10.3109/09513591003686395
Tethool, A. N., G. Ciptadi, S. Wahjuningsih, A. Amaliya, W. Sawitri, & T. Susilawati. 2021. The influence of individual factors on the characteristics and production of frozen semen of Bali Cattle. J. Adv. Vet. Res. 11:162-166.
Topraggaleh, T. R., A. Shahverdi, A. Rastegarnia, B. Ebrahimi, V. Shafiepour, M. Sharbatoghli, V. Esmaeili, & E. Janzamin. 2014. Effect of cysteine and glutamine added to extender on post-thaw sperm functional parameters of buffalo bull. Andrologia 46:777–783. https://doi.org/10.1111/and.12148
Trzcińska, M. & M. Bryła. 2015. Apoptotic-like changes of boar spermatozoa in freezing media supplemented with different antioxidants. Pol. J. Vet. Sci. 18:473–480. https://doi.org/10.1515/pjvs-2015-0062
Tsai, Y. J. & B.-H Chen. 2016. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3. Int. J. Nanomedicine 11:1907. https://doi.org/10.2147/IJN.S103759
Wittayarat, M., S. Panyaboriban, N. Kupthammasan, T. Otoi, & K. Chatdarong. 2022. Effects of green tea polyphenols and α-tocopherol on the quality of chilled cat spermatozoa and sperm IZUMO1 protein expression during long-term preservation. Anim. Reprod. Sci. 237:106926. https://doi.org/10.1016/j.anireprosci.2022.106926
Yániz, J. L., I. Palacín, K. S. Caycho, C. Soler, M. A. Silvestre, & P. Santolaria. 2018. Determining the relationship between bull sperm kinematic subpopulations and fluorescence groups using an integrated sperm quality analysis technique. Reprod. Fertil. Dev. 30:919. https://doi.org/10.1071/RD17441
Yániz, J. L., C. Soler, & P. Santolaria. 2015. Computer assisted sperm morphometry in mammals: A review. Anim. Reprod. Sci. 156:1–12. https://doi.org/10.1016/j.anireprosci.2015.03.002
Yekti, A. P. A., W. D. Cahyo, S. Wahjuningsih, A. N. Huda, & T. Susilawati. 2020. The decreasing of quality liquid semen using four months storages of tris aminomethan and CEP-3 diluents. IOP Conf. Ser. Earth Environ. Sci. 478:012079. ttps://doi.org/10.1088/1755-1315/478/1/012079
Zhong, H.-X., G.-G. Li, F. Xiong, P.-L. Chen, C.-Y. Wan, Z.-H. Yao, Z.-H. Ma, Y. Zeng, & Q. Sun. 2019. IVOS II versus sperm class analyzer in the results of semen analysis. Zhonghua Nan Ke Xue 25:124–128.
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.