Genome-Wide Association Study for Body Weight and Carcass Weight in Sumba Ongole Bulls (Bos indicus)
Abstract
Sumba Ongole (Bos indicus) is a native beef cattle that adapts well in Sumba Island of Indonesia. This study was carried out to perform a genome-wide association study for body weight (BW) and carcass weight (CW) in Sumba Ongole (SO) bulls. A total of forty-eight (n=48) SO bulls were used in this study. The data were collected from the slaughterhouse at Bogor City, West Java, Indonesia, and were analyzed using a genomic software of TASSEL 5.0 to obtain the best genetic marker. The result showed that the threshold Manhattan plot (-Log10P3) was used to select SNP markers for BW and CW in SO bulls. The two (2) SNP markers at BTA1, i.e., ARS-BFGL-NGS-3162 (CEP63 gene) and ARS-BFGL-NGS-78232 were significantly associated with BW and CW, respectively. Nonetheless, the genetic diversity in both SNP markers was low, with a PIC value of less than 0.30. In conclusion, the heterozygous TG bulls in CEP63 gene have higher CW than homozygous TT bulls.
References
Aboul-Naga, A. M., A. M. Alsamman, A. E. Allali, M. H. Elshafie, E. S. Abdelal, T. M. Abdelkhalek, T. H. Abdelsabour, L. G. Mohamed, & A. Hamwieh. 2022. Genome-wide analysis identified candidate varians and genes associated with heat stress adaptation in Egyptian sheep breeds. Front. Genet. 13:898522. https://doi.org/10.3389/fgene.2022.898522
Adhikari, M., M. B. Kantar, R. J. Longman, C. N. Lee, M. Oshiro, K. Caires, & Y. He. 2023. Genome-wide association study for carcass weight in pasture-finished beef cattle in Hawai’i. Front. Genet. 14:1168150. https://doi.org/10.3389/fgene.2023.1168150
Akanno, E. C., G. Plastow, C. Fitzsimmons, S. P. Miller, V. Baron, K. Ominski, & J. A. Basarab. 2015. Genome-wide association for heifer reproduction and calf performance traits in beef cattle. Genome 58:549-557. https://doi.org/10.1139/gen-2015-0031
Agung, P. P., S. Anwar, A. S. Wulandari, A. Sudiro, S. Said, & B. Tappa. 2015. The potency of Sumba Ongole (SO) cattle: A study of genetic characterization and carcass productivity. J. Indones. Trop. Anim. Agric. 40:71-78. https://doi.org/10.14710/jitaa.40.2.71-78
Bradbury, P. J., Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss, & E. S. Buckler. 2007. TASSEL: Software for association mapping of complex traits in diverse matrix. Bioinformatics 23:2633-2635. https://doi.org/10.1093/bioinformatics/btm308
Brown, N. J., M. Marjanovic, J. Luders, T. H. Strackerm, & V. Costanzo. 2013. Cep63 and cep152 cooperate to ensure centriole duplication. PLoS ONE 8:e69986. https://doi.org/10.1371/journal.pone.0069986
Butler, M. L., A. R. Hartman, J. M. Bormann, R. L. Weaber, D. M. Grieger, & M. M. Rolf. 2022. Genome-wide association study of beef bull semen attributes. BMC Genomics 23:74. https://doi.org/10.1186/s12864-021-08256-z
Chen, Z., Y. Yao, P. Ma, Q. Wang, & Y. Pan. 2018. Haplotype-based genome-wide association study identifies loci and candidate genes formilk yield in Holsteins. PloS ONE 13:e0192695. https://doi.org/10.1371/journal.pone.0192695
da Cruz, A. S., D. C. Silva, L. B. Minasi, L. K. F. Teixeira, F. M. Rodrigues, C. C. da Silva, A. S. do Carmo, M. V. G. B. da Silva, Y. T. Utsunomiya, J. F. Garcia, & A. D. da Cruz. 2021. Single-nucleotide polymorphism variations associated with specific genes putatively identified enhanced genetic predisposition for 305-day milk yield in the girolando crossbreed. Front. Genet. 11:573344. https://doi.org/10.3389/fgene.2020.573344
Einarsdottir, E., I. Svensson, F. Darki, M. Peyrard-Janvid, J. M. Lindvall, A. Ameur, C. Jacobsson, T. Klingberg, J. Kere, & H. Matsson. 2015. Mutation in CEP63 cosegregating with developmental dyslexia in a Swedish family. Hum. Genet. 134:1239-1248. https://doi.org/10.1007/s00439-015-1602-1
Espigolan, R., F. Baldi, A. A. Boligon, F. R. P. Souza, G. A. Fernandes-Junior, D. G. M. Gordo, G. C. Venturini, G. M. F. de Camargo, F. L. B. Feitosa, D. A. Garcia, H. Tonhati, L. A. L. Chardulo, H. N. Oliveira, & L. G. Albuquerque. 2015. Associations between single nucleotide polymorphisms and carcass traits in Nellore cattle using high-density panels. Genet. Mol. Res. 14:11133-11144. https://doi.org/10.4238/2015.September.22.7
Falconer, D. S. & T. F. C. Mackay. 1989. Introduction to Quantitative Genetics. 4th ed. Longman Group, Hong Kong.
Frayling, T. M. 2014. Genome-wide association study: The good, the bad and the ugly. Clin. Med. J. 14:428-431. https://doi.org/10.7861/clinmedicine.14-4-428
Georges, M., C. Charlier, & B. Hayes. 2019. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 20:135-156. https://doi.org/10.1038/s41576-018-0082-2
Hartati, Y. T. Utsunomiya, T. S. Sonstegard, J. F. Garcia, J. Jakaria, & M. Muladno. 2015. Evidence of Bos javanicus × Bos indicus hybridization and major QTLs for birth weight in Indonesian peranakan Ongole cattle. BMC Genet. 16:75. https://doi.org/10.1186/s12863-015-0229-5
Hildebrand, C. E., D. C. Torney, & R. P. Wagner. 1992. Informativeness of polymorphic DNA markers. Los Alamos Sci. 20:100-102.
Hyeong, K. E., A. Iqbal, & J. J. Kim. 2014. A genome wide association study on age at first calving using high density single nucleotide polymorphism chips in Hanwoo (Bos taurus coreanae). Asian-Australas. J. Anim. Sci. 27:1406-1410. https://doi.org/10.5713/ajas.2014.14273
Ibeagha-Awemu, E. M., S. O. Peters, K. A. Akwanji, I. G. Imumorin, & X. Zhao. 2016. High density genome widegenotyping-by-sequencing andassociation identifies common andlow frequency SNPs, and novelcandidate genes influencing cow milk traits. Sci. Rep. 6:31109. https://doi.org/10.1038/srep31109
Irano, N., G. M. F. de Camargo, R. B. Costa, A. P. N. Terakado, A. F. B. Magalhaes, R. M. O. Silva, M. M. Dias, A. B. Bignardi, F. Baldi, R. Carvalheiro, H. N. Oliveira, & L. G. de Albuquerque. 2016. Genome-wide association study for indicator traits of sexual precocity in Nellore cattle. PLoS ONE 11:e0159502. https://doi.org/10.1371/journal.pone.0159502
Irshad, A., G. Kandeepan, S. Kumar, A. Kumar, M. R. Vishnuraj, & V. Shukla. 2013. Factors influencing carcass composition of livestock: A review. J. Anim. Prod. Adv. 3:177-186.
Jahuey-Martinez, F. J., G. M. Parra-Bracamonte, A. M. Sifuentes-Rincon, J. C. Martinez-Gonzales, C. Godro, C. A. Garcia-Perez, & L. A. Lopez-Bustamante. 2016. Genomewide association analysis of growth traits in Charolais beef cattle. J. Anim. Sci. 94:4570-4582. https://doi.org/10.2527/jas.2016-0359
Kelly, M. J., R. K. Tume, M. Fortes, & J. M. Thompson. 2014. Whole-genome association study of fatty acid composition in a diverse range of beef cattle breeds. J. Anim. Sci. 92:1895-1901. https://doi.org/10.2527/jas.2013-6901
Lee, Y. S. & D. Shin. 2018. Estimation of the genetic substitution rate of Hanwoo and Holstein cattle using whole genome sequencing data. Genomics Inform. 16:14-20. https://doi.org/10.5808/GI.2018.16.1.14
Lin, Y. J., W. L. Liao, C. H. Wang, L. P. Tsai, C. H. Tang, C. H. Chen, J. Y. Wu, W. M. Liang, A. R. Hsieh, C. F. Cheng, J. H. Chen, W. K. Chien, T. H. Lin, C. M. Wu, C. C. Liao, S. M. Huang, & F. J. Tsai. 2017. Association of human heightrelated genetic variants with familial short stature in Han Chinese in Taiwan. Sci. Rep. 7:6372. https://doi.org/10.1038/s41598-017-06766-z
Magalhaes, A. F. B., G. M. F. de Camargo, G. A. F. Junior, D. G. M. Gordo, R. L. Tonussi, R. B. Costa, R. Espigolan, R. M. O. Silva, T. Bresolin, W. B. F. de Andrade, L. Takada, F. L. B. Feitosa, F. Baldi, R. Carvalheiro, L. A. L. Chardulo, & L. G. de Albuquerque. 2016. Genome-wide association study of meat quality traits in Nellore cattle. PLoS ONE 11:e0157845. https://doi.org/10.1371/journal.pone.0157845
Nei, M. & S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
Nei, M. & F. Tajima. 1981. Genetic drift and estimation of effective population size. Genetics 98:625-640. https://doi.org/10.1093/genetics/98.3.625
Niciura, S. C. M., M. V. Benavides, C. H. Okino, A. M. G. Ibelli, A. P. Minho, S. N. Esteves, & A. C. S. Chagas. 2022. Genome-wide association study for Haemonchus contortus resistence in Morada Nova sheep. Pathogenes 11:939. https://doi.org/10.3390/pathogens11080939
Qanbari, S., E. C. G. Pimentel, J. Tetens, G. Thaller, P. Lichtner, A. R. Sharifi, & H. Simianer. 2010. A genome-wide scan for signatures of recent selection in Holstein cattle. Anim. Genet. 41:377-389. https://doi.org/10.1111/j.1365-2052.2009.02016.x
Rowan, T. N., H. J. Durbin, C. M. Seabury, R. D. Schnabel, & J. E. Decker. 2021. Powerful detection of polygenic selection and evidence of environmental adaptation in US beef cattle. PLoS Genet. 17:e1009652. https://doi.org/10.1371/journal.pgen.1009652
Salleh, M. S., G. Mazzoni, M. O. Nielsen, P. Lovendahl, & H. N. Kadarmideen. 2018. Identification of expression QTLs targeting candidate genes for residual feed intake in dairy cattle using systems genomics. J. Genet. Genome Res. 5:035. https://doi.org/10.23937/2378-3648/1410035
Santana, M. H. A., Y. T. Utsunomiya, H. H. R. Neves, R. C. Gomes, J. F. Garcia, H. Fukumasu, S. L. Silva, P. R. Leme, L. L. Coutinho, J. P. Eler, & J. B. S. Ferraz. 2014. Genome-wide association study for feedlot average daily gain in Nellore cattle (Bos indicus). J. Anim. Breed. Genet. 131:210-216. https://doi.org/10.1111/jbg.12084
Santana, M. H. A., R. C. Gomes, Y. T. Utsunomiya, H. H. R. Neves, F. J. Novais, M. N. Bonin, H. Fukumasu, J. F. Garcia, P. A. Alexandre, G. A. Oliveira-Junior, L. L. Coutinho, & J. B. S. Ferraz. 2015. Genet. Mol. Res. 14:5229-5233. https://doi.org/10.4238/2015.May.18.14
Song, Y., L. Xu, Y. Chen, L. Zhang, H. Gao, B. Zhu, H. Niu, W. Zhang, J. Xia, X. Gao, & J. Li. 2016. Genome-wide association study reveals the PLAG1 gene for knuckle, biceps and shank weight in Simmental beef cattle. PLoS ONE 11:e0168316. https://doi.org/10.1371/journal.pone.0168316
SAS. 2013. Statistical Analysis Software. Users’ Guide Statistics Version 9.4. SAS Institute Inc., Cary, NC.
Sudrajad, P., H. Suhada, D. Prasetyo, P. N. Gariri, E. Eddianto, A. F. Abiyoga, R. Y. Kusminanto, S. Sukaryo, T. A. Bramastya, S. D. Volkandari, & M. Cahyadi. 2023. Genome-wide association study of birth weight in Bali cattle (Bos javanicus). Trop. Anim. Sci. J. 46:151-156. https://doi.org/10.5398/tasj.2023.46.2.151
Sudrajad, P., R. Y. Kusminanto, S. D. Volkandari, & M. Cahyadi. 2022. Genomic structure of Bali cattle based on linkage disequilibrium and effective population size analyses using 50K single nucleotide polymorphisms data. Vet. World 15:449-454. https://doi.org/10.14202/vetworld.2022.449-454
Tam, V., N. Patel, M. Turcotte, Y. Bosse, G. Pare, & D. Meyre. 2019. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20:467-484. https://doi.org/10.1038/s41576-019-0127-1
Trujano-Chavez, M. Z., A. Ruiz-Florez, R. Lopez-Ordaz, & P. Perez-Rodriguez. 2022. Genetic diversity in reproductive traits of Braunvieh cattle determined with SNP markers. Vet. Med. Sci. 4:1709-1720. https://doi.org/10.1002/vms3.836
Vahedi, S. M., S. S. Ardestani, K. P. Afshari, S. M. Ghoreishifar, S. Moghaddaszadeh-Ahrabi, M. H. Banabazi, & L. F. Brito. 2022. Genome-wide selection signatures and human-mediated introgression events in Bos taurus indicus- influenced composite beef cattle. Front. Genet. 13:844653. https://doi.org/10.3389/fgene.2022.844653
Vavanhossou, S. F. U., C. Scheper, L. H. Dossa, T. Yin, K. Brugemann, & S. Konig. 2020. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genomics. 21:783. https://doi.org/10.1186/s12864-020-07170-0
Wagner, P., T. Yin, K. Brugemann, P. Engel, C. Weimann, K. Schlez, & S. Konig. 2021. Genome-wide associations for microscopic differential somatic cell count and specific mastitis pathogens in Holstein cows in compost-bedded pack and cubicle farming systems. Animals 11:1839. https://doi.org/10.3390/ani11061839
Wang, Z., B. Zhu, H. Niu, W. Zhang, X. Ling, X. Lei, Y. Chen, L. Zhang, X. Gao, H. Gao, S. Zhang, L. Xu, & J. Li. 2019.Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle. J. Anim. Sci. Biotechnol. 10:27. https://doi.org/10.1186/s40104-019-0322-0
Weir, B. S. 1996. Genetic Data Analysis II. Sinauer Associates, Sunderland, Massachusetts.
Xia, J., H. Fan, T. Chang, L. Xu, W. Zhang, Y. Song, B. Zhu, L. Zhang, X. Gao, Y. J. Chen, & Gao. 2017. Searching for new loci and candidate genes for economically important traits through gene-based association analysis of Simmental cattle. Sci. Rep. 7:42048. https://doi.org/10.1038/srep42048
Zepeda-Batista, J. L., R. Nunez-Dominguez, R. Ramirez-Valverde, F. J. Jahuey-Martinez, J. B. Herrera-Ojeda, & G. M. Parra-Bracamonte. 2021. Discovering of genomic variations associated to growth trats by GWAS in Braunvieh cattle. Genes 12:1666. https://doi.org/10.3390/genes12111666
Zhu, B., H. Niu, W. Zhang, Z. Wang, Y. Liang, L. Guan, P. Guo, Y. Chen, L. Zhang, Y. Guo, H. Ni, X. Gao, H. Gao, L. Xu, & J. Li. 2017. Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array. BMC Genomics 18:464. https://doi.org/10.1186/s12864-017-3847-7
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.