The Probiotic Properties of Lactobacilli in Organic Pigs

D. Liu, K. Direksin, M. Panya


Indigenous Lactobacilli are suitable probiotics because they adapt well in the hosts and ecological niches. Here we test local Lactobacillus for future application in the pigs as the farm-autogenous strains. The objectives of this study were to evaluate the probiotic properties of Lactobacillus isolated from the feces of antibiotic-free organic pigs. The properties include bile salt and pepsin tolerance, survival in storage (37 & 4 oC) and probiotic-packaging (50 oC) temperatures, antibiogram, and antagonistic activity against Salmonella typhimurium ATCC 13311 and Escherichia coli ATCC 25922. Eighteen isolates with three different species were tested in this study as follows: L. reuteri (seven strains), L. mucosae (ten strains), and L. plantarum (one strain). Four isolates—L. reuteri-OP1, L. mucosae-OP2, L. mucosae-OP3, and L. reuteri-OP17—had good in vitro probiotic characteristics. Eleven isolates completely inhibited both E. coli and S. typhimurium. The other isolates are perfectly disabled, either E. coli or S. typhimurium. Despite that, they caused a reduction in the numbers of each pathogen. All Lactobacilli tested were susceptible to amoxicillin-clavulanate, ampicillin, and imipenem. Most isolates were sensitive to clindamycin (72%), gentamicin (56%), and tetracycline (50%). Half of the proportions were somewhat sensitive/resistant to cefotaxime (39/44%), tetracycline (50/39%), and streptomycin (39/56%). One hundred percent of Lactobacilli were resistant to norfloxacin, sulfamethoxazole-trimethoprim, and vancomycin, while 94% were resistant to enrofloxacin. Most of the local Lactobacilli passed in vitro tests, but the efficacy of probiotics in pigs awaits further in vivo investigation. Therefore, the potential probiotic strains derived from this study could be selected for further evaluation of their probiotic roles in economic pigs.


Ahn, Y. T., K. L. Lim, J. C. Ryu, D. K. Kang, J. S. Ham, Y. H. Jang, & H. U. Kim. 2002. Characterization of Lactobacillus acidophilus isolated from piglets and chicken. Asian-Australas. J. Anim. Sci. 15:1790-1797.
Alayande, K. A., O. A. Aiyegoro, & C. N. Ateba. 2020. Probiotics in animal husbandry: Applicability and associated risk factors. Sustainability 12:1087.
Anisimova, E. & D. Yarullina. 2018. Characterization of Erythromycin and Tetracycline resistance in Lactobacillus fermentum strains. Int. J. Microbiol. 2018:3912326.
Anisimova, E. A. & D. R. Yarullina. 2020. Antibiotic resistance and the mobility of its genetic determinants in Lactobacillus fermentum. Mol. Gen. Microbiol. Virol. 35:202-209.
Arboleya, S., P. Ruas-Madiedo, A. Margolles, G. Solís, S. Salminen, G. C. de los Reyes-Gavilán, & A. Gueimonde. 2011. Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int. J. Food Microbiol. 149:28-36.
Awasti, N., S. K. Tomar, S. D. Pophaly, P. Poonam, V. K. Lule, T. P. Singh, & S. Anand. 2016. Probiotic and functional characterization of bifidobacteria of Indian human origin. J. Appl. Microbiol. 120:1021-1032.
Betancur, C., Y. Martínez, G. Tellez‐isaias, M. C. Avellaneda, & B. Velázquez‐martí. 2020. In vitro characterization of indigenous probiotic strains isolated from colombian creole pigs. Animals 10:1204.
Breda, L.K. Van, O. P. Dhungyel, A. N. Ginn, J. R. Iredell, & P. Ward. 2017. Pre- and post-weaning scours in southeastern Australia: A survey of 22 commercial pig herds and characterisation of Escherichia coli isolates. PLoS ONE 12:e0172528.
Casado Muñoz, M. del C., N. Benomar, L. L. Lerma, A. Gálvez, & H. Abriouel. 2014. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. Int. J. Food Microbiol. 172:110-118.
CLSI (Clinical and Laboratory Standards Institute). 2018. Performance Standards for Antimicrobial Susceptibility Testing. 28th Ed. CLSI standard M100. Clinical and Laboratory Standards Institute, Wayne, PA.
Dec, M., R. Urban-Chmiel, D. Stȩpień-Pyśniak, & A. Wernicki. 2017. Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens. Gut Pathog. 9:54.
Feichtinger, M., S. Mayrhofer, W. Kneifel, & K. J. Domig. 2016. Tetracycline resistance patterns of Lactobacillus buchneri group strains. J. Food Prot. 79:1741-1747.
Fenster, K., B. Freeburg, C. Hollard, C. Wong, R. R. Laursen, & A. C. Ouwehand. 2019. The production and delivery of probiotics: A review of a practical approach. Microorganisms 7:83.
Fijan, S. 2014. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. Public Health. 11:4745-4767.
Fijan, S., D. Šulc, & A. Steyer. 2018. Study of the in vitro antagonistic activity of various single-strain and multi-strain probiotics against Escherichia coli. Int. J. Environ. Res. Public Health. 15:1539.
Fouhse, J.M., R. T. Zijlstra, & B. P. Willing. 2016. The role of gut microbiota in the health and disease of pigs. Anim. Front. 6:30-36.
Fukuda, K., A. Seidavi, Y. Nami, Y. Sun sunyuan, H.-J. Qiu, M. Li, Y. Wang, H. Cui, Y. Li, & Y. Sun. 2020. Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front. Vet. Sci. 7:49.
Georgieva, R., L. Yocheva, L. Tserovska, G. Zhelezova, N. Stefanova, A. Atanasova, A. Danguleva, G. Ivanova, N. Karapetkov, N. Rumyan, & E. Karaivanova. 2015. Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol. Biotechnol. Equip. 29:84-91.
Henze, L. J., N. J. Koehl, H. Bennett-Lenane, R. Holm, M. Grimm, F. Schneider, W. Weitschies, M. Koziolek, & B. T. Griffin. 2021. Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule. Eur. J. Pharm. Sci. 156:105627.
Hou, C., X. Zeng, F. Yang, H. Liu, & S. Qiao. 2015. Study and use of the probiotic Lactobacillus reuteri in pigs: A review. J. Anim. Sci. Biotechnol. 6.
Hummel, A. S., C. Hertel, W. H. Holzapfel, & C. M. A. P. Franz. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol. 73:730-739.
Jomehzadeh, N., H. Javaherizadeh, M. Amin, M. Saki, M. T. S. Al-Ouqaili, H. Hamidi, M. Seyedmahmoudi, & Z. Gorjian. 2020. Isolation and identification of potential probiotic Lactobacillus species from feces of infants in southwest Iran. Int. J. Infect. Dis. 96:524-530.
Komatsu, T., M. Matsubayashi, N. Murakoshi, K. Sasai, & T. Shibahara. 2019. Retrospective and histopathological studies of Entamoeba spp. and other pathogens associated with diarrhea and wasting in pigs in Aichi Prefecture, Japan. Jpn. Agric. Res. Q. 53:59-67.
Lee, I. K., Y. C. Kye, G. Kim, H. W. Kim, M. J. Gu, J. Umboh, K. Maaruf, S. W. Kim, & C. H. Yun. 2016. Stress, nutrition, and intestinal immune responses in pigs: A review. Asian-Australas. J. Anim. Sci. 29:1075-1082
Novik, G. & V. Savich. 2020. Beneficial microbiota. Probiotics and pharmaceutical products in functional nutrition and medicine. Microbes Infect. 22:8-18
Praepanitchai, O., A. Noomhorm, & A. K. Anal. 2019. Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in Calcium-Alginate-Soy protein Isolate-Based Hydrogel beads in different processing conditions (pH and Temperature) and in pasteurized mango juice. Biomed. Res. Int. 2019:9768152.
Ruiz, L., A. Margolles, & B. Sánchez. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 4:396.
Sayan, H., P. Assavacheep, K. Angkanaporn, & A. Assavacheep. 2018. Effect of Lactobacillus salivarius on growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs challenged with F4+ enterotoxigenic Escherichia coli. Asian-Australas. J. Anim. Sci. 31:1308-1314.
Schmitt, J. D., L. O. De Fariña, M. Simões, & L. B. M. Kottwitz. 2018. Evaluation of the probiotic profile of the Lactobacillus acidophilus used in pharmaceutical and food applications. Acta Sci. Health Sci. 40:1-9.
Sharma, C., S. Gulati, N. Thakur, B. P. Singh, S. Gupta, S. Kaur, S. K. Mishra, A. K. Puniya, J. P. S. Gill, & H. Panwar. 2017. Antibiotic sensitivity pattern of indigenous Lactobacilli isolated from curd and human milk samples. 3 Biotech 7:53.
Singh, T. P., G. Kaur, S. Kapila, & R. K. Malik. 2017. Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Front. Microbiol. 8:486.
Śliżewska, K., A. Chlebicz-Wójcik, & A. Nowak. 2021. Probiotic properties of new Lactobacillus strains intended to be used as feed additives for monogastric animals. Probiotics Antimicrob. Proteins. 13:146-162.
Sniffen, J. C., L. V. McFarland, C. T. Evans, & E. J. C. Goldstein. 2018. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS ONE 13.
Watkins, C., K. Murphy, E. M. Dempsey, B. P. Murphy, P. W. O’Toole, R. Paul Ross, C. Stanton, & C. Anthony Ryan. 2018. The viability of probiotics in water, breast milk, and infant formula. Eur. J. Pediatr. 177:867-870.
Wylensek, D., T. C. A. Hitch, T. Riedel, A. Afrizal, N. Kumar, E. Wortmann, T. Liu, S. Devendran, T. R. Lesker, S. B. Hernández, V. Heine, E. M. Buhl, P. M. D’Agostino, F. Cumbo, T. Fischöder, M. Wyschkon, T. Looft, V. R. Parreira, B. Abt, H. L. Doden, L. Ly, J. M. P. Alves, M. Reichlin, K. Flisikowski, L. N. Suarez, A. P. Neumann, G. Suen, T. De Wouters, S. Rohn, I. Lagkouvardos, E. Allen-Vercoe, C. Spröer, B. Bunk, A. J. Taverne-Thiele, M. Giesbers, J. M. Wells, K. Neuhaus, A. Schnieke, F. Cava, N. Segata, L. Elling, T. Strowig, J. M. Ridlon, T. A. M. Gulder, J. Overmann, & T. Clavel. 2020. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat. Commun. 11:6389.
Zhang, S., J. H. Oh, L. M. Alexander, M. özçam, & J. P. Van Pijkeren. 2018. D-Alanyl-D-alanine ligase as a broad-host-range counterselection marker in Vancomycin-resistant lactic acid bacteria. J. Bacteriol. 200:e00607-17.
Zhang, Z., H. Zhang, & T. Liu. 2019. Study on body temperature detection of pig based on infrared technology: A review. Artif. Intell. Agric. 1:14-26.
Zotta, T., E. Parente, & A. Ricciardi. 2017. Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry. J. Appl. Microbiol. 122:857-869.
Zou, X., M. Weng, X. Ji, R. Guo, W. Zheng, & W. Yao. 2017. Comparison of antibiotic resistance and copper tolerance of Enterococcus spp. and Lactobacillus spp. isolated from piglets before and after weaning. J. Microbiol. 55:703-710.


D. Liu
K. Direksin (Primary Contact)
M. Panya
LiuD., DireksinK., & PanyaM. (2022). The Probiotic Properties of Lactobacilli in Organic Pigs. Tropical Animal Science Journal, 45(1), 112-120.

Article Details