Abstract
Indigenous Lactobacilli are suitable probiotics because they adapt well in the hosts and ecological niches. Here we test local Lactobacillus for future application in the pigs as the farm-autogenous strains. The objectives of this study were to evaluate the probiotic properties of Lactobacillus isolated from the feces of antibiotic-free organic pigs. The properties include bile salt and pepsin tolerance, survival in storage (37 & 4 oC) and probiotic-packaging (50 oC) temperatures, antibiogram, and antagonistic activity against Salmonella typhimurium ATCC 13311 and Escherichia coli ATCC 25922. Eighteen isolates with three different species were tested in this study as follows: L. reuteri (seven strains), L. mucosae (ten strains), and L. plantarum (one strain). Four isolates—L. reuteri-OP1, L. mucosae-OP2, L. mucosae-OP3, and L. reuteri-OP17—had good in vitro probiotic characteristics. Eleven isolates completely inhibited both E. coli and S. typhimurium. The other isolates are perfectly disabled, either E. coli or S. typhimurium. Despite that, they caused a reduction in the numbers of each pathogen. All Lactobacilli tested were susceptible to amoxicillin-clavulanate, ampicillin, and imipenem. Most isolates were sensitive to clindamycin (72%), gentamicin (56%), and tetracycline (50%). Half of the proportions were somewhat sensitive/resistant to cefotaxime (39/44%), tetracycline (50/39%), and streptomycin (39/56%). One hundred percent of Lactobacilli were resistant to norfloxacin, sulfamethoxazole-trimethoprim, and vancomycin, while 94% were resistant to enrofloxacin. Most of the local Lactobacilli passed in vitro tests, but the efficacy of probiotics in pigs awaits further in vivo investigation. Therefore, the potential probiotic strains derived from this study could be selected for further evaluation of their probiotic roles in economic pigs.
References
Alayande, K. A., O. A. Aiyegoro, & C. N. Ateba. 2020. Probiotics in animal husbandry: Applicability and associated risk factors. Sustainability 12:1087. https://doi.org/10.3390/su12031087
Anisimova, E. & D. Yarullina. 2018. Characterization of Erythromycin and Tetracycline resistance in Lactobacillus fermentum strains. Int. J. Microbiol. 2018:3912326. https://doi.org/10.1155/2018/3912326
Anisimova, E. A. & D. R. Yarullina. 2020. Antibiotic resistance and the mobility of its genetic determinants in Lactobacillus fermentum. Mol. Gen. Microbiol. Virol. 35:202-209. https://doi.org/10.3103/S0891416820040035
Arboleya, S., P. Ruas-Madiedo, A. Margolles, G. Solís, S. Salminen, G. C. de los Reyes-Gavilán, & A. Gueimonde. 2011. Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int. J. Food Microbiol. 149:28-36. https://doi.org/10.1016/j.ijfoodmicro.2010.10.036
Awasti, N., S. K. Tomar, S. D. Pophaly, P. Poonam, V. K. Lule, T. P. Singh, & S. Anand. 2016. Probiotic and functional characterization of bifidobacteria of Indian human origin. J. Appl. Microbiol. 120:1021-1032. https://doi.org/10.1111/jam.13086
Betancur, C., Y. Martínez, G. Tellez‐isaias, M. C. Avellaneda, & B. Velázquez‐martí. 2020. In vitro characterization of indigenous probiotic strains isolated from colombian creole pigs. Animals 10:1204. https://doi.org/10.3390/ani10071204
Breda, L.K. Van, O. P. Dhungyel, A. N. Ginn, J. R. Iredell, & P. Ward. 2017. Pre- and post-weaning scours in southeastern Australia: A survey of 22 commercial pig herds and characterisation of Escherichia coli isolates. PLoS ONE 12:e0172528. https://doi.org/10.1371/journal.pone.0172528
Casado Muñoz, M. del C., N. Benomar, L. L. Lerma, A. Gálvez, & H. Abriouel. 2014. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. Int. J. Food Microbiol. 172:110-118. https://doi.org/10.1016/j.ijfoodmicro.2013.11.025
CLSI (Clinical and Laboratory Standards Institute). 2018. Performance Standards for Antimicrobial Susceptibility Testing. 28th Ed. CLSI standard M100. Clinical and Laboratory Standards Institute, Wayne, PA.
Dec, M., R. Urban-Chmiel, D. Stȩpień-Pyśniak, & A. Wernicki. 2017. Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens. Gut Pathog. 9:54. https://doi.org/10.1186/s13099-017-0203-z
Feichtinger, M., S. Mayrhofer, W. Kneifel, & K. J. Domig. 2016. Tetracycline resistance patterns of Lactobacillus buchneri group strains. J. Food Prot. 79:1741-1747. https://doi.org/10.4315/0362-028X.JFP-15-577
Fenster, K., B. Freeburg, C. Hollard, C. Wong, R. R. Laursen, & A. C. Ouwehand. 2019. The production and delivery of probiotics: A review of a practical approach. Microorganisms 7:83. https://doi.org/10.3390/microorganisms7030083
Fijan, S. 2014. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. Public Health. 11:4745-4767. https://doi.org/10.3390/ijerph110504745
Fijan, S., D. Šulc, & A. Steyer. 2018. Study of the in vitro antagonistic activity of various single-strain and multi-strain probiotics against Escherichia coli. Int. J. Environ. Res. Public Health. 15:1539. https://doi.org/10.3390/ijerph15071539
Fouhse, J.M., R. T. Zijlstra, & B. P. Willing. 2016. The role of gut microbiota in the health and disease of pigs. Anim. Front. 6:30-36. https://doi.org/10.2527/af.2016-0031
Fukuda, K., A. Seidavi, Y. Nami, Y. Sun sunyuan, H.-J. Qiu, M. Li, Y. Wang, H. Cui, Y. Li, & Y. Sun. 2020. Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front. Vet. Sci. 7:49. https://doi.org/10.3389/fvets.2020.00049
Georgieva, R., L. Yocheva, L. Tserovska, G. Zhelezova, N. Stefanova, A. Atanasova, A. Danguleva, G. Ivanova, N. Karapetkov, N. Rumyan, & E. Karaivanova. 2015. Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol. Biotechnol. Equip. 29:84-91. https://doi.org/10.1080/13102818.2014.987450
Henze, L. J., N. J. Koehl, H. Bennett-Lenane, R. Holm, M. Grimm, F. Schneider, W. Weitschies, M. Koziolek, & B. T. Griffin. 2021. Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule. Eur. J. Pharm. Sci. 156:105627. https://doi.org/10.1016/j.ejps.2020.105627
Hou, C., X. Zeng, F. Yang, H. Liu, & S. Qiao. 2015. Study and use of the probiotic Lactobacillus reuteri in pigs: A review. J. Anim. Sci. Biotechnol. 6. https://doi.org/10.1186/s40104-015-0014-3
Hummel, A. S., C. Hertel, W. H. Holzapfel, & C. M. A. P. Franz. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol. 73:730-739. https://doi.org/10.1128/AEM.02105-06
Jomehzadeh, N., H. Javaherizadeh, M. Amin, M. Saki, M. T. S. Al-Ouqaili, H. Hamidi, M. Seyedmahmoudi, & Z. Gorjian. 2020. Isolation and identification of potential probiotic Lactobacillus species from feces of infants in southwest Iran. Int. J. Infect. Dis. 96:524-530. https://doi.org/10.1016/j.ijid.2020.05.034
Komatsu, T., M. Matsubayashi, N. Murakoshi, K. Sasai, & T. Shibahara. 2019. Retrospective and histopathological studies of Entamoeba spp. and other pathogens associated with diarrhea and wasting in pigs in Aichi Prefecture, Japan. Jpn. Agric. Res. Q. 53:59-67. https://doi.org/10.6090/jarq.53.59
Lee, I. K., Y. C. Kye, G. Kim, H. W. Kim, M. J. Gu, J. Umboh, K. Maaruf, S. W. Kim, & C. H. Yun. 2016. Stress, nutrition, and intestinal immune responses in pigs: A review. Asian-Australas. J. Anim. Sci. 29:1075-1082 https://doi.org/10.5713/ajas.16.0118
Novik, G. & V. Savich. 2020. Beneficial microbiota. Probiotics and pharmaceutical products in functional nutrition and medicine. Microbes Infect. 22:8-18 https://doi.org/10.1016/j.micinf.2019.06.004
Praepanitchai, O., A. Noomhorm, & A. K. Anal. 2019. Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in Calcium-Alginate-Soy protein Isolate-Based Hydrogel beads in different processing conditions (pH and Temperature) and in pasteurized mango juice. Biomed. Res. Int. 2019:9768152. https://doi.org/10.1155/2019/9768152
Ruiz, L., A. Margolles, & B. Sánchez. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 4:396. https://doi.org/10.3389/fmicb.2013.00396
Sayan, H., P. Assavacheep, K. Angkanaporn, & A. Assavacheep. 2018. Effect of Lactobacillus salivarius on growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs challenged with F4+ enterotoxigenic Escherichia coli. Asian-Australas. J. Anim. Sci. 31:1308-1314. https://doi.org/10.5713/ajas.17.0746
Schmitt, J. D., L. O. De Fariña, M. Simões, & L. B. M. Kottwitz. 2018. Evaluation of the probiotic profile of the Lactobacillus acidophilus used in pharmaceutical and food applications. Acta Sci. Health Sci. 40:1-9. https://doi.org/10.4025/actascihealthsci.v40i1.36664
Sharma, C., S. Gulati, N. Thakur, B. P. Singh, S. Gupta, S. Kaur, S. K. Mishra, A. K. Puniya, J. P. S. Gill, & H. Panwar. 2017. Antibiotic sensitivity pattern of indigenous Lactobacilli isolated from curd and human milk samples. 3 Biotech 7:53. https://doi.org/10.1007/s13205-017-0682-0
Singh, T. P., G. Kaur, S. Kapila, & R. K. Malik. 2017. Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Front. Microbiol. 8:486. https://doi.org/10.3389/fmicb.2017.00486
Śliżewska, K., A. Chlebicz-Wójcik, & A. Nowak. 2021. Probiotic properties of new Lactobacillus strains intended to be used as feed additives for monogastric animals. Probiotics Antimicrob. Proteins. 13:146-162. https://doi.org/10.1007/s12602-020-09674-3
Sniffen, J. C., L. V. McFarland, C. T. Evans, & E. J. C. Goldstein. 2018. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0209205
Watkins, C., K. Murphy, E. M. Dempsey, B. P. Murphy, P. W. O’Toole, R. Paul Ross, C. Stanton, & C. Anthony Ryan. 2018. The viability of probiotics in water, breast milk, and infant formula. Eur. J. Pediatr. 177:867-870. https://doi.org/10.1007/s00431-018-3133-y
Wylensek, D., T. C. A. Hitch, T. Riedel, A. Afrizal, N. Kumar, E. Wortmann, T. Liu, S. Devendran, T. R. Lesker, S. B. Hernández, V. Heine, E. M. Buhl, P. M. D’Agostino, F. Cumbo, T. Fischöder, M. Wyschkon, T. Looft, V. R. Parreira, B. Abt, H. L. Doden, L. Ly, J. M. P. Alves, M. Reichlin, K. Flisikowski, L. N. Suarez, A. P. Neumann, G. Suen, T. De Wouters, S. Rohn, I. Lagkouvardos, E. Allen-Vercoe, C. Spröer, B. Bunk, A. J. Taverne-Thiele, M. Giesbers, J. M. Wells, K. Neuhaus, A. Schnieke, F. Cava, N. Segata, L. Elling, T. Strowig, J. M. Ridlon, T. A. M. Gulder, J. Overmann, & T. Clavel. 2020. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat. Commun. 11:6389. https://doi.org/10.1038/s41467-020-19929-w
Zhang, S., J. H. Oh, L. M. Alexander, M. özçam, & J. P. Van Pijkeren. 2018. D-Alanyl-D-alanine ligase as a broad-host-range counterselection marker in Vancomycin-resistant lactic acid bacteria. J. Bacteriol. 200:e00607-17. https://doi.org/10.1128/JB.00607-17
Zhang, Z., H. Zhang, & T. Liu. 2019. Study on body temperature detection of pig based on infrared technology: A review. Artif. Intell. Agric. 1:14-26. https://doi.org/10.1016/j.aiia.2019.02.002
Zotta, T., E. Parente, & A. Ricciardi. 2017. Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry. J. Appl. Microbiol. 122:857-869. https://doi.org/10.1111/jam.13399
Zou, X., M. Weng, X. Ji, R. Guo, W. Zheng, & W. Yao. 2017. Comparison of antibiotic resistance and copper tolerance of Enterococcus spp. and Lactobacillus spp. isolated from piglets before and after weaning. J. Microbiol. 55:703-710. https://doi.org/10.1007/s12275-017-6241-x
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.