The Influence of Plant Age and Microbes-Enzymatic Additives on Fermentation of Total Mixed Ration Silages of Capiaçu Grass (Pennisetum purpureum, Schum)

J. P. Alves, E. S. J. Galeano, M. A. P. Orrico Junior, T. Fernandes, M. Retore, M. S. J. da Silva, A. C. A. Orrico, L. da S. Lopes

Abstract

The conservation of elephant grass cultivar Capiaçu in the form of total mixed ration (TMR) silage can help to improve the quality of the fermentative process and optimize feed management. However, the best cutting age of grass and the necessity of using microbes-enzymatic additives to aid in the process have not been determined thus far. Therefore, the objective of this study was to evaluate cutting age and different microbes-enzymatic additives on the fermentative and nutritional quality of total mixed ration (TMR) silages based on BRS Capiaçu. A completely randomized design was used in a 3×3 factorial scheme, with three cutting ages of grass (60, 90, and 120 days of regrowth), associated with three types of additives [CON (control), HOM (homofermentative inoculant + fibrolytic enzyme), and COMBO (homofermentative inoculant + heterofermentative inoculant + fibrolytic enzyme)]. The fermentative losses, the production of organic acids, chemical composition, and the aerobic stability of the tested silages were measured. The TMR silages containing 60-day-old grass showed the lowest dry matter contents, highest effluent production, and lower aerobic stability. The COMBO inoculant application provided higher acetic acid contents and greater aerobic stability of the 90- and 120-day-old grass silages. The highest lactic acid concentrations were observed in silages produced with the 60- and 90-day-old grass silages. It is concluded that the TMR produced with BRS Capiaçu at 90 days of age and in association with COMBO is the best option to balance the nutritional and fermentative quality of this type of silage.

References

Adesogan, A. T., K. G. Arriola, Y. Jiang, A. Oyebade, E. M. Paula, J. J. Romero, L. F. Ferraretto, & D. Vyas. 2019. Symposium review: Technologies for improving fiber utilization. J. Dairy Sci. 102:1–30. https://doi.org/10.3168/jds.2018-15334
AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington
Borreani, G., E. Tabacco, R. J. Schmidt, B. J. Holmes, & R. E. Muck. 2018. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 101:3952–3979. https://doi.org/10.3168/jds.2017-13837
Bueno, A. V. I., G. Lazzari, C. C. Jobim, & J. L. P. Daniel. 2020. Ensiling total mixed ration for ruminants: A review. Agronomy. 10. https://doi.org/10.3390/agronomy10060879
Carlson, R. M. 1978. Automated separation and conductimetric determination of ammonia and dissolved carbon dioxide. Anal. Chem. 50:1528–1531. https://doi.org/10.1021/ac50033a035
Comino, L., E. Tabacco, F. Righi, A. Revello-chion, A. Quarantelli, & G. Borreani. 2014. Effects of an inoculant containing a Lactobacillus buchneri that produces ferulate-esterase on fermentation products, aerobic stability, and fibre digestibility of maize silage harvested at different stages of maturity. Anim. Feed Sci. Technol. 198:94–106. https://doi.org/10.1016/j.anifeedsci.2014.10.001
Cunha, S. S., M. A. P. Orrico Junior, R. A. Reis, A. C. A. Orrico, A. W. Schwingel, S. D. S. Reis, & M. S. J. Silva. 2020. Use of crude glycerine and microbial inoculants to improve the fermentation process of Tifton 85 haylages. Trop. Anim. Health Prod. 52:871–879. https://doi.org/10.1007/s11250-019-02082-y
Gandra, J. R., E. R. Oliveira, E. R. de S. Gandra, C. S. Takiya, R. H. T. B. de Goes, K. M. P. Oliveira, K. A. Silveira, H. M. C. Araki, N. D. Orbach, & D. N. Vasquez. 2016. Inoculation of Lactobacillus buchneri alone or with bacillus subtilis and total losses, aerobic stability, and microbiological quality of sunflower silage. J. Appl. Anim. Res. 45:609–614. https://doi.org/10.1080/09712119.2016.1249874
Gebrehanna, M. M., R. J. Gordon, A. Madani, A. C. VanderZaag, & J. D. Wood. 2014. Silage effluent management: A review. J. Environ. Manage. 143:113–122. https://doi.org/10.1016/j.jenvman.2014.04.012
Gusmão, J. O., M. A. C. Danés, D. R. Casagrande, & T. F. Bernardes. 2018. Total mixed ration silage containing elephant grass for small-scale dairy farms. Grass Forage Sci. 73:717–726. https://doi.org/10.1111/gfs.12357
Kung Jr, L., R. D. Shaver, R. J. Grant, & R. J. Schmidt. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101:4020–4033. https://doi.org/10.3168/jds.2017-13909
Li, J., X. Yuan, Z. Dong, W. Mugabe, & T. Shao. 2018. The effects of fibrolytic enzymes, cellulolytic fungi and bacteria on the fermentation characteristics, structural carbohydrates degradation, and enzymatic conversion yields of Pennisetum sinese silage. Bioresour. Technol. 264:123–130. https://doi.org/10.1016/j.biortech.2018.05.059
Li, P., S. Ji, Q. Wang, M. Qin, C. Hou, & Y. Shen. 2017. Adding sweet potato vines improve the quality of rice straw silage. Anim. Sci. J. 88:625–632. https://doi.org/10.1111/asj.12690
Maxin, G., D. Andueza, A. Le Morvan, & R. Baumont. 2017. Effect of intercropping vetch (Vicia sativa L.), field pea (Pisum sativum L.) and triticale (X Triticosecale) on dry-matter yield, nutritive and ensiling characteristics when harvested at two growth stages. Grass Forage Sci. 72:777–784. https://doi.org/10.1111/gfs.12277
Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. AOAC Int. 85:1217–1240.
Michel, P. H. . F., L. C. Gonçalves, J. S. Rodrigues, K. M. Keller, V. S. Raposo, E. M. Lima, F. P. C. Santos, & D. G. Jayme. 2016. Re-ensiling and inoculant application with Lactobacillus plantarum and Propionibacterium acidipropionici on sorghum silages. Grass Forage Sci. 72:432–440. https://doi.org/10.1111/gfs.12253
Monção, F. P., M. A. M. S. Costa, J. P. S. Rigueira, E. C. J. de Sales, D. B. Leal, M. F. P. da Silva, V. M. Gomes, J. M. A. Chamone, D. D. Alves, C. da Cunha Siqueira Carvalho, J. E. J. Murta, & V. R. R. Júnior. 2020. Productivity and nutritional value of BRS capiaçu grass (Pennisetum purpureum) managed at four regrowth ages in a semiarid region. Trop. Anim. Health Prod. 52:235–241. https://doi.org/10.1007/s11250-019-02012-y
Monção, F. P., M. A. M. S. Costa, J. P. S. Rigueira, M. M. A. Moura, V. R. Rocha, V. M. Gomes, D. B. Leal, C. M. A. Maranhão, C. J. B. Albuquerque, & J. M. A. Chamone. 2019. Yield and nutritional value of BRS Capiaçu grass at different regrowth ages. Semin. Agrar. 40:2045–2055. https://doi.org/10.5433/1679-0359.2019v40n5p2045
Muia, J. M. K., S. Tamminga, P. N. Mbugua, & J. N. Kariuki. 1999. Optimal stage maturity for feeding Napier grass (Pennisetum purpureum) to dairy cows in Kenya. Trop. Grasslands. 33:182–190.
Orrico Junior, M. A. P., J. A. Velazquez Duarte, C. Crone, F. D. O. Neves, R. A. Reis, A. C. A. Orrico, A. W. Schwingel, & D. M. Vilela. 2017. The use of crude glycerin as an alternative to reduce fermentation losses and enhance the nutritional value of Piatã grass silage. Rev. Bras. Zootec. 46:638–644. https://doi.org/10.1590/s1806-92902017000800002
Orrico Junior, M. A. P., J. M. B. Vendramini, J. Erickson, P. Moriel, M. L. A. Silveira, A. D. Aguiar, J. M. D. Sanchez, W. L. Silva, & H. M. Silva. 2020. Nutritive value and fermentation characteristics of silages produced from different sweet sorghum plant components with or without microbial inoculation. Appl. Anim. Sci. 36:777–783. https://doi.org/10.15232/aas.2020-02027
Orrico Junior, M. A. P., M. Retore, D. M. Manarelli, F. B. De Souza, L. L. M. Ledesma, & A. C. A. Orrico. 2015. Forage potential and silage quality of four varieties of saccharine sorghum. Pesqui. Agropecu. Bras. 50:1201–1207. https://doi.org/10.1590/S0100-204X2015001200010
Pereira, A. Vander, F. J. da S. Lédo, & J. C. Machado. 2017. BRS Kurumi and BRS Capiaçu - New elephant grass cultivars for grazing and cut-and-carry system. Crop Breed. Appl. Biotechnol. 17:59–62. https://doi.org/10.1590/1984-70332017v17n1c9
Playne, M. J. & P. McDonald. 1966. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 17:264–268. https://doi.org/10.1002/jsfa.2740170609
Santos, R. J. C., M. de A. Lira, A. Guim, M. V. F. dos Santos, J. C. B. Dubeux, & A. C. de L. de Mello. 2013. Elephant grass clones for silage production. Sci. Agric. 70:6–11. https://doi.org/10.1590/S0103-90162013000100002
Tilley, J. M. A. & R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Vendramini, J. M. B., A. D. Aguiar, A. T. Adesogan, L. E. Sollenberger, E. Alves, L. Galzerano, P. Salvo, A. L. Valente, K. G. Arriola, Z. X. Ma, & F. C. L. Oliveira. 2016. Effects of genotype, wilting, and additives on the nutritive value and fermentation of bermudagrass silage. J. Anim. Sci. 94:3061–3071. https://doi.org/10.2527/jas.2016-0306
Weinberg, Z. G., Y. Chen, D. Miron, Y. Raviv, E. Nahim, A. Bloch, E. Yosef, M. Nikbahat, & J. Miron. 2011. Preservation of total mixed rations for dairy cows in bales wrapped with polyethylene stretch film - A commercial scale experiment. Anim. Feed Sci. Technol. 164:125–129. https://doi.org/10.1016/j.anifeedsci.2010.11.016
Wilkinson, J. M. & D. R. Davies. 2013. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 68:1–19. https://doi.org/10.1111/j.1365-2494.2012.00891.x
Zailan, M. Z., H. Yaakub, & S. Jusoh. 2016. Yield and nutritive value of four Napier (Pennisetum purpureum) cultivars at different harvesting ages. Agric. Biol. J. North Am. 7:213–219.

Authors

J. P. Alves
E. S. J. Galeano
M. A. P. Orrico Junior
marcojunior@ufgd.edu.br (Primary Contact)
T. Fernandes
M. Retore
M. S. J. da Silva
A. C. A. Orrico
L. da S. Lopes
AlvesJ. P., GaleanoE. S. J., Orrico JuniorM. A. P., FernandesT., RetoreM., da SilvaM. S. J., OrricoA. C. A., & LopesL. da S. (2022). The Influence of Plant Age and Microbes-Enzymatic Additives on Fermentation of Total Mixed Ration Silages of Capiaçu Grass (Pennisetum purpureum, Schum). Tropical Animal Science Journal, 45(1), 56-63. https://doi.org/10.5398/tasj.2022.45.1.56

Article Details