Performances of KUB Chickens Fed Diets with Different Nutrient Densities and BS4 Enzyme Supplementation

A. P. Sinurat, T. Haryati, A. Herliatika, N. Pratiwi

Abstract

An experiment was conducted to study the effect of dietary enzyme supplementation (E) on the performance of KUB chickens fed different nutrient densities (ND). Diets with three densities: 70.7 g crude protein/Mcal or high (H), 66.1 g crude protein/Mcal or medium (M), and 59.3 g crude protein/Mcal or low (L), were formulated and supplemented with or without enzyme. Diets were given in four feeding programs, i.e., H-M-L, H-M-M, M-M-L, and M-L-L during the starter (1–28 d), grower (29–56 d), and finisher (57–84 d) periods, respectively. Each treatment was replicated five times. Bodyweight gain (BWG), feed intake, and FCR were measured each period. At the end of the trial, carcass yield and internal organs were measured. Results of the experiment (1–84 d period) showed that the feed intake was significantly affected by ND. Chickens fed the H-M-L diets have the highest feed intake, while the lowest was found in chickens fed M-M-L diets. A significant interaction was found in the FCR. The best FCR was found in chickens fed the H-M-M diets without enzymes, but the best FCR was found on the M-M-L diets with enzymes. Livability, carcass yield, abdominal fat, liver, proventriculus, and gizzard weights were not affected by the treatments. The jejunum sizes of chickens were significantly longer when fed the low-density diet than those fed the higher nutrient density diet. The ileum sizes of chickens were significantly shorter than chickens fed the diet without enzymes. The highest income over feed cost was achieved when chickens were fed the M-M-L diets supplemented with enzymes. It is concluded that the best performance of growing KUB chickens was obtained when fed M-M-L diets supplemented with BS4 enzymes (30 Units of saccharification/kg diet) and when fed H-M-M diets without enzyme supplementation.

References

Abdallh, M. E., E. U. Ahiwe, S. Musigwa, E. P. Chang’a, M. Al-Qahtani, D. J. Cadogan, & P. A. Iji. 2020. Energy and protein utilisation by broiler chickens fed diets containing cottonseed meal and supplemented with a composite enzyme product. Br. Poult. Sci. 61: 424-432. https://doi.org/10.1080/00071668.2020.1736266

Abudabos, A. M. 2012. Effect of enzyme supplementation to normal and low density broiler diets based on corn-soybean meal. Asian J. Anim. Vet. Adv. 7:139-148. https://doi.org/10.3923/ajava.2012.139.148

Amerah, A. M., L. F. Romero, A. Awati, & V. Ravindran. 2017. Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poult. Sci. 96: 807–816. https://doi.org/10.3382/ps/pew297

Balasubramanian, B., S. L. Ingale, J. Hong Park, P. C. Rathi, S. Shanmugam, & I. H. Kim. 2018. Inclusion of dietaryβ-mannanase improves performance and ileal digestibility and reduces ileal digesta viscosity of broilers fed corn-soybean meal based diet. Poult. Sci. 97:3097–3101. https://doi.org/10.3382/ps/pey157

BSN [Badan standard Nasional]. 2013a. SNI 7783.1-2013. Pakan ayam buras – Bagian 1:Starter. BSN, Jakarta

BSN [Badan standard Nasional]. 2013b. SNI 7783.2-2013. Pakan ayam buras – Bagian 2: Grower. BSN, Jakarta

BSN [Badan standard Nasional]. 2016a. SNI-8290.1-2016-Pakan-ayam-raspetelur-Bagian-1-sebelum-masa-awal-layer-prestarter. BSN, Jakarta

BSN [Badan standard Nasional]. 2016b. SNI-8290.2-2016-Pakan-ayam-ras-petelur-Bagain-2-Masa-awal-Layer-starter. BSN, Jakarta

BSN [Badan standard Nasional]. 2016c. SNI-8290.3-2016-Pakan-ayam-ras-petelur-Bagian-3-Dara-Layer-grower. BSN, Jakarta

Classen, H. L. 2017. Diet energy and feed intake in chickens. Anim. Feed Sci. Tech. 233:13-21. https://doi.org/10.1016/j.anifeedsci.2016.03.004

El-Kelawy, M. I., A. S. El-Shafey, & R. M. Ali. 2017. Impact of dietary supplementation with multi-enzyme and/or probiotics on productive performance and nutrients digestibility of broiler chickens. Egyp. J. Nut. Feed 20: 535-543. https://doi.org/10.21608/ejnf.2017.75331

Hajati, H. 2010. Effects of enzyme supplementation on performance, carcass characteristics, carcass composition and some blood parameters of broiler chicken. Am. J. Anim. Vet Sci. 5: 221-227. https://doi.org/10.3844/ajavsp.2010.221.227

Hidayat, C., S. Iskandar. T. Sartika, & T. Wardhani. 2017. Growth response of improved native breeds of chicken to diets differed in energy and protein content. J. Ilmu Ternak Vet. 21: 174-. https://doi.org/10.14334/jitv.v21i3.1397

Hussein, E. O. S., G. M. Suliman, A. N. Alowaimer, S. H. Ahmed, M. E. Abd El-Hack, A. E. Taha, & A. A. Swelum. 2020. Growth, carcass characteristics, and meat quality of broilers fed a low-energy diet supplemented with a multienzyme preparation. Poult. Sci. 99: 1988-1994. https://doi.org/10.1016/j.psj.2019.09.007

Irawan, H., S. Tantalo, & K. Nova. 2018. Performa ayam kub unsex periode finisher (9--12 minggu) pada pemberian ransum dengan kadar protein berbeda. Performance of chicken kub unsex finisher period (9-12 weeks) on rations supply with different level protein. J. Riset dan Inovasi Peternakan 2:27-33

Jabbar, A., M. Tahir, R. U. Khan, & N. Ahmad. 2021. Interactive effect of exogenous protease enzyme and dietary crude protein levels on growth and digestibility indices in broiler chickens during the starter phase. Trop. Anim. Health Prod. 53:23. https://doi.org/10.1007/s11250-020-02466-5

Kalmendal, R. & R. Tauson. 2012. Effects of a xylanase and protease, individually or in combination, and an ionophore coccidiostat on performance, nutrient utilization, and intestinal morphology in broiler chickens fed a wheat-soybean meal-based diet. Poult. Sci. 91 :1387–1393. https://doi.org/10.3382/ps.2011-02064

Kim, S. J., K. W. Lee, C. W. Kang, & B. K. An. 2016. Growth performance, relative meat and organ weights, cecal microflora, and blood characteristics in broiler chickens fed diets containing different nutrient density with or without essential oils. Anim Biosci. 29: 549-554. https://doi.org/10.5713/ajas.15.0426

Lamot, D. M., D. Sapkota, P. J. A. Wijtten, I. van den Anker, M. J. W. Heetkamp, B. Kemp, & H. van den Brand, 2019. Diet density during the first week of life: Effects on growth performance, digestive organ weight, and nutrient digestion of broiler chickens. Poult. Sci. 98: 789-795. https://doi.org/10.3382/ps/pey002

Mayora, I. W., S. Tantalo, K. Nova, & R. Sutrisna. 2018. Performa ayam KUB (Kampung Unggul Balitnak) periode starter pada pemberian ransum dengan protein kasar yang berbeda. J. Riset dan Inovasi Peternakan. 2: 2598–3067.

Puteri, N. I., Gushairiyanto, & Depison. 2020. Growth patterns, body weight, and morphometric of KUB chicken, Sentul chicken and Arab chicken. Buletin Peternakan 44: 67-72. https://doi.org/10.21059/buletinpeternak.v44i3.57016

Sari, M. L., S. Tantolo, & K. Nova. 2017. Performa ayam KUB (kampung unggul balitnak) periode grower pada pemberian ransum dengan kadar protein kasar yang berbeda. J. Riset dan Inovasi Peternakan. 1: 36–41.

Saragih, H. T. S., F. Viniwidihastuti, R. P. Lembayu, A. R. Kinanthi, H. Kurnianto, & I. Lesmana. 2019. Phenotypic characteristics of exotic-broiler, kampung, male exotic- layer, KUB-1 and pelung chickens. JITV. 24: 9-14. https://doi.org/10.14334/jitv.v24i1.1889

Shu-Biao, W., R. A. Swick, J. Noblet, N. Rodgers, D. Cadogan, & M. Choct. 2019. Net energy prediction and energy efficiency of feed for broiler chickens. Poult. Sci. 98: 1222-1234. https://doi.org/10.3382/ps/pey442

Sinurat, A. P., T. Purwadaria, & T. Pasaribu. 2013. Improving nutrient values of palm kernel cake (PKC) by reducing shell contamination and enzymes supplementation. JITV. 18: 34-41. https://doi.org/10.14334/jitv.v18i1.254

Sinurat, A. P., T. Purwadaria, P. P. Ketaren, & T. Pasaribu. 2014. Substitutions of soybean meal with enriched palm kernel meal in laying hens diet. JITV. 19: 184-192. https://doi.org/10.14334/jitv.v19i3.1081

Sinurat, A. P., T. Purwadaria, & M. Purba. 2015. Effect of enzyme supplementation on nutritive values of fermented palm kernel cake used to substitute soybean meal in broiler diet. JITV. 20: 184-192. https://doi.org/10.14334/jitv.v20i3.1185

Sun, Y., S. Tang, Y. Chen, D. L. Li, Y. L. Bi, D. K. Hua, C. Chen, Q. Y. Luo, L. Yang, & J. L. Chen. 2017. Effects of light regimen and nutrient density on growth performance, carcass traits, meat quality, and health of slowgrowing broiler chickens. Livest. Sci. 198: 201-208.

Wang, X. Q., W. Jiang, H. Z. Tan, D. X. Zhang, H. J. Zhang, S. Wei, & H. C. Yan. 2013. Effects of breed and dietary nutrient density on the growth performance, blood metabolite, and genes expression of target of rapamycin (TOR) signalling pathway of female broiler chickens. J. Anim. Physiol. Anim. Nut. 97: 797-806. https://doi.org/10.1111/j.1439-0396.2012.01320.x

Zaefarian, F., M. R., Abdollahi, & V. Ravindran. 2015. Starch digestion in broiler chickens fed cereal diets. Anim. Feed Sci. Tech. 209:16-29. https://doi.org/10.1016/j.anifeedsci.2015.07.020

Zhai, W., E. D. Peebles, C. D. Zumwalt, L. Mejia, & A. Corzo. 2013. Effects of dietary amino acid density regimens on growth performance and meat yield of Cobb × Cobb 700 broilers. J. Appl. Poult. Res. 22: 447-460. https://doi.org/10.3382/japr.2012-00658

Authors

A. P. Sinurat
arnoldps57@yahoo.com (Primary Contact)
T. Haryati
A. Herliatika
N. Pratiwi
SinuratA. P., HaryatiT., HerliatikaA., & PratiwiN. (2022). Performances of KUB Chickens Fed Diets with Different Nutrient Densities and BS4 Enzyme Supplementation. Tropical Animal Science Journal, 45(1), 73-83. https://doi.org/10.5398/tasj.2022.45.1.73

Article Details

List of Cited By :

Crossref logo