Detection and Dietary Exposure Assessment of Fluoroquinolones Residues in Chicken Meat from the Districts of Malang and Blitar, Indonesia
Abstract
The purpose of this study was to determine the presence of fluoroquinolones (enrofloxacin and ciprofloxacin) residues in fresh chicken meat and evaluate its consumption risk to the adult population in Indonesia. A total of 55 fresh chicken-meat samples were collected from Districts of Malang and Blitar, East Java Province, Indonesia, in April 2017. Detections of enrofloxacin and ciprofloxacin were carried out using high-performance liquid chromatography equipped with a PDA detector. It was found that ciprofloxacin was detected with a frequency of 67.3% at a maximum concentration of 275.00 ng/g. Enrofloxacin was detected with a frequency of 41.8% at a maximum concentration of 242.40 ng/g, or totally as a sum of enrofloxacin and ciprofloxacin residues detected in 76.4% samples at a maximum concentration of 367.50 ng/g. The estimated dietary intakes of ciprofloxacin and enrofloxacin were 44.90 ng/kg body weight/day and 7.91 ng/kg body weight/day, respectively, resulting in the hazard indexes of 0.0063 and 0.0013 for the consumptions of ciprofloxacin and enrofloxacin residues in chicken meat. Therefore, the risk associated with the consumption of ciprofloxacin and enrofloxacin residues in chicken meat by the adult population in Indonesia was considered negligible.
References
BSN (Badan Standardidasi Nasional). 2000. Standar Nasional Indonesia No. 01-6366-2000. Batas maksimum cemaran mikroba dan batas maksimum residu dalam bahan makanan asal hewan. Badan Standarisasi Nasional, Jakarta.
Cañada-Cañada, F., A. Espinosa-Mansilla, A. J. Girón, & A. M. De La Peña. 2012. Simultaneous determination of the residues of fourteen quinolones and fluoroquinolones in fish samples using liquid chromatography with photometric and fluorescence detection. Czech J. Food Sci. 30:74-82. https://doi.org/10.17221/12/2010-CJFS
EC (European Commission). 2002. European Commission: Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. https://op.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en.
EMEA. 1998. Enrofloxacin (Modification for bovine, porcine, and poultry). https://www.ema.europa.eu/en/documents/mrl-report/enrofloxacin-modification-bovine-porcine-poultry-summary-report-2-committee-veterinary-medicinal_en.pdf. [13 October 2020].
Er, B., F. Kaynak Onurdǎ, B. Demirhan, S. Özgen Özgacar, A. Bayhan Öktem, & U. Abbasoǧlu. 2013. Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poult. Sci. 92:2212-2215. https://doi.org/10.3382/ps.2013-03072
Gouvêa, R., F. F. Dos Santos, M. De Aquino, & V. L. Pereira. 2015. Fluoroquinolones in industrial poultry production, bacterial resistance and food residues: A review. Rev. Bras. Cienc. Avic. 17:1-10. https://doi.org/10.1590/1516-635x17011-10
Hanna, N., P. Sun, Q. Sun, X. Li, X. Yang, X. Ji, H. Zou, J. Ottoson, L. E. Nilsson, & B. Berglund. 2018. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. J. Environ. Int. 114:131-142. https://doi.org/10.1016/j.envint.2018.02.003
Hasanen, F., M. Mohammed, H. M. Hassan, & F. Amro. 2016. Ciprofloxacin residues in chicken and turkey carcasses. Benha. Vet. Med. J. 31:136-143. https://doi.org/10.21608/bvmj.2016.31282
Lee, H. J., S. H. Cho, D. Shin, & H. S. Kang. 2018. Prevalence of antibiotic residues and antibiotic resistance in isolates of chicken meat in Korea. Korean J. Food. Sci. Anim. Resour. 38:1055-1063. https://doi.org/10.5851/kosfa.2018.e39
Marni, S., A. M. Mustafa, & M. R. Marzura. 2011. Analysis of quinolones in poultry muscles using liquid chromatography-tandem mass spectrometry. Malaysian J. Vet. Res. 2:1-5.
Mashak, Z., A. Mojaddarlangroodi, T. Mehdizadeh, & A. E. Fathabad. 2017. Detection of quinolones residues in beef and chicken meat in hypermarkets of urmia, Iran using ELISA. Iran Agric. Res. 36:73-77.
Moudgil, P., J. S. Bedi, R. S. Aulakh, & J. P. S. Gill. 2019. Analysis of antibiotic residues in raw and commercial milk in Punjab, India vis-à-vis human health risk assessment. J. Food Saf. 39:1-8. https://doi.org/10.1111/jfs.12643
Ovando, H. G., N. Gorla, A. Weyers, L. Ugnia, & A. Magnoli. 2004. Simultaneous quantification of ciprofloxacin, enrofloxacin and balofloxacin in broiler chicken muscle. Arch. Med. Vet. 36:93-98. https://doi.org/10.4067/S0301-732X2004000100011
Oyedeji, A.O., T. A. M. Msagati, A. B. Williams, & N. U. Benson. 2019. Determination of antibiotic residues in frozen poultry by a solid-phase dispersion method using liquid chromatography-triple quadrupole mass spectrometry. Toxicol. Rep. 6:951-956. https://doi.org/10.1016/j.toxrep.2019.09.005
Pena, A., L. J. G. Silva, A. Pereira, L. Meisel, & C. M. Lino. 2010. Determination of fluoroquinolone residues in poultry muscle in Portugal. Anal. Bioanal. Chem. 397:2615-2621. https://doi.org/10.1007/s00216-010-3819-0
Pereira, A. M. P. T., L. J. G. Silva, J. Rodrigues, C. Lino, & A. Pena. 2018. Risk assessment of fluoroquinolones from poultry muscle consumption: Comparing healthy adult and pre-school populations. Food Chem. Toxicol. 118:340-347. https://doi.org/10.1016/j.fct.2018.05.035
Pugajeva, I., J. Avsejenko, E. Judjallo, A. Bērziņš, E. Bartkiene, & V. Bartkevics. 2018. High occurrence rates of enrofloxacin and ciprofloxacin residues in retail poultry meat revealed by an ultra-sensitive mass-spectrometric method, and antimicrobial resistance to fluoroquinolones in Campylobacter spp. Food Addit. Contam - Part A. Chem. Anal. Control Expo Risk Assess. 35:1107-1115. https://doi.org/10.1080/19440049.2018.1432900
San Martin, B., J. Cornejo, L. Lapierre, D. IragÜen, F. Pérez, H. Hidalgo H, & F. Andre. 2010. Withdrawal time of four pharmaceutical formulations of enrofloxacin in poultry according to different maximum residues limits. J. Vet. Pharmacol. Ther. 33:246-251. https://doi.org/10.1111/j.1365-2885.2009.01127.x
Šandor, K., T. Svjetlana, M. Andrišic, I. Žarkovic, & P. Eleonora. 2012. In-use stability of enrofloxacin solution for injection in multi-dose containers. Acta. Vet. Brno. 62:213-225. https://doi.org/10.2298/AVB1203213S
Siswanto. 2014. Studi Diet Total: Survei Konsumsi Makanan Individu Indonesia 2014. Lembaga Penerbitan Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan RI, Jakarta.
Sultan, I. A. 2014. Detection of enrofloxacin residue in livers of livestock animals obtained from a slaughterhouse in Mosul City. J. Vet. Sci. Technol. 5:2-4.
Sureshkumar, V. & G. Sarathchandra. 2018. Prevalence of enrofloxacin and its primary metabolite ciprofloxacin residues in broiler meat and organ samples of field origin. Glob. J. Bio-Sci. Biotech. 7:324-326.
Thi Huong-Anh, N., D. Van Chinh, & T. Thi Tuyet-Hanh. 2020. Antibiotic residues in chickens and farmers’ knowledge of their use in Tay Ninh Province, Vietnam, in 2017. Asia-Pac. J. Pub. Health. 32:126-132. https://doi.org/10.1177/1010539520909942
Trouchon, T. & S. Lefebvre. 2016. A review of enrofloxacin for veterinary use. Open J. Vet .Med. 6:40-58. https://doi.org/10.4236/ojvm.2016.62006
Tsai, M. Y., C. F. Lin, W. C. Yang, C. T. Lin, K. H. Hung, & G. R. Chang. 2019. Health risk assessment of banned veterinary drugs and quinolone residues in shrimp through liquid chromatography-tandem mass spectrometry. Appl. Sci. 9:1-11. https://doi.org/10.3390/app9122463
Vishnuraj, M. R., G. Kandeepan, K. H. Rao, S. Chand, & V. Kumbhar. 2016. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review. Cogent Food Agric. 2:1235458. https://doi.org/10.1080/23311932.2016.1235458
Yamaguchi, T., M. Okihashi, K. Harada, Y. Konishi, K. Uchida, M. H. N. Do. H. D. T. Bui, T. D. Nguyen, P. D. Nguyen, & V. V. Chan. 2015. Antibiotic residue monitoring results for pork, chicken, and beef samples in Vietnam in 2012-2013. J. Agric Food Chem. 63:5141-5145. https://doi.org/10.1021/jf505254y
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.