The Role of Arbuscular Mycorrhizal Fungi Density and Diversity on the Growth and Biomass of Corn and Sorghum Forage in Trapping Culture

M. Husein, N. Umami, A. Pertiwiningrum, M. M. Rahman, D. Ananta


This study aimed to determine the effectiveness of arbuscular mycorrhizal fungi (AMF) in the absorption of nutrients in trapping culture and its effects on the growth and biomass production of corn (Zea mays L.) and sorghum (Sorghum sp.). Soil samples with rhizosphere were collected from three different places: Bambusa sp., Cichorium intybus L., and Pinus merkusii. The density and genus of AMF spores were evaluated. AMF effectiveness was tested using six levels of rhizosphere and two species (corn and sorghum) of plants with a 2×6 factorial experiment with eight replications of each treatment. Six types of rhizospheres were: (i) bamboo rhizosphere (Bambusa sp.) (T1), (ii) control for T1 (C1), (iii) chicory rhizosphere (C. intybus L.) (T2), (iv) control for T2 (C2), (v) Pine rhizosphere (P. merkusii) (T3), and (vi) control for T3 (C3). The control treatment was derived from sterilized planting media. The results showed that the root rhizosphere of Bambusa sp. had more density and diversity of AMF spores than the root rhizosphere of C. intybus L. and P. merkusii. At the end of the trapping culture, the host plants sorghum and corn increased the density of spores in the carrier medium or propagules of the three rhizosphere types. The difference in the amount of initial AMF had a significant (p<0.05) effect on plant height, the number of leaves, and the biomass production of trapping plants. It can be concluded that more density and colonization of arbuscular mycorrhizal spores show higher growth and biomass of trapping plants.


Al-arjani, A. F., A. Hashem, E. Fathi E, & A. Allah. 2020. Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss. Saudi J. Biol. Sci. 27:380–394.
Alguacil, M. M., E. Torrecillas, F. García-orenes, & A. Roldán. 2014. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol. Biochem. 76:34–44.
Anderson, I. C., B. Drigo, K. Keniry, O. Ghannoum, S. M. Chambers, D. T. Tissue, & J. W. G. Cairney. 2013. Interactive effects of preindustrial, current and future atmospheric CO2 concentrations and temperature on soil fungi associated with two Eucalyptus species. FEMS Microbiol. Ecol. 83:425–437.
Avramova, V., H. Abdelgawad, Z. Zhang, B. Fotschki, R. Casadevall, L. Vergauwen, D. Knapen, E. Taleisnik, Y. Guisez, H. Asard, & G. T. S. Beemster. 2015. Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol. 169:1382–1396.
Babalola, O. O. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32:1559–1570.
Barea, J. M., M. J. Pozo, J. A. López-Ráez, R. Aroca, J. M. Ruíz-Lozano, N. Ferrol, R. Azcón, & C. Azcón-Aguilar. 2013. Arbuscular mycorrhizas and their significance in promoting soil-plant systems sustainability against environmental stresses. In: M. B. Rodelas & J. Gonzalez-Lopez (Eds). Beneficial plant-microbial interactions: Ecology and applications. CRC Press/Taylor & Francis, London. pp. 353–387.
Belay, Z., M. Negash, J. Kaseva, M. Vestberg, & H. Kahiluoto. 2020. Native forests but not agroforestry systems preserve arbuscular mycorrhizal fungal species richness in southern Ethiopia. Mycorrhiza 30:749–759.
Bever, J. D., S. C. Richardson, B. M. Lawrence, J. Holmes, & M. Watson. 2009. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 12:13-21.
Birhane, E., N. Fatumah, K. Gidey, A. Zenebe, & S. Mohammed. 2018. Vegetation cover density and disturbance affected arbuscular mycorrhiza fungi spore density and root colonization in a dry Afromontane forest, northern Ethiopia. J. For. Res. 29:675–686.
Bona, E., S. Cantamessa, N. Massa, P. Manassero, F. Marsano, A. Copetta, G. Lingua, G. D’Agostino, E. Gamalero, & G. Berta. 2017. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: A field study. Mycorrhiza 27:1–11.
Cappellari, L. del R., M. V. Santoro, F. Nievas, W. Giordano, & E. Banchio. 2013. Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl. Soil Ecol. 70:16–22.
Clair, S. B. S. & J. P. Lynch. 2010. The opening of Pandora’s Box: Climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil. 335:101–115.
Deja-Sikora, E., A. Kowalczyk, A. Trejgell, A. Szmidt-Jaworska, C. Baum, L. Mercy, & K. Hrynkiewicz. 2020. Arbuscular mycorrhiza changes the impact of potato virus Y on growth and stress tolerance of Solanum tuberosum L. in vitro. Front. Microbiol. 10:1–12.
Direktorat Jenderal Peternakan dan Kesehatan Hewan. 2018. Director General of Livestock and Animal Health Services. [17 December 2019]
Eom, A. H., D. C. Hartnett, & G. W. T. Wilson. 2000. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435–444.
Gull, A., A. A. Lone, & N. U. I. Wani. 2019. Biotic and Abiotic Stresses in Plants. In: Alexandre Bosco de Oliveira (Eds). Abiotic and biotic stress in plants. IntechOpen, London. p. 1–19. Chapter 66714.
Hawkes, C. V., S. N. Kivlin, J. D. Rocca, V. Huguet, M. A. Thomsen, & K. B. Suttle. 2011. Fungal community responses to precipitation. Glob. Chang. Biol. 17:1637–1645.
Hussain, F. & F. Usman. 2019. Fungal Botic Stresses in Plants and its Control Strategy. In: Alexandre Bosco de Oliveira (Eds). Abiotic and Biotic Stress in Plants. IntechOpen, London. Chapter 65038.
INVAM. 2017. International culture collection of (vesicular) arbuscular mycorrhizal fungi. West Virginia University.[10 Oktober 2020]
Jones, M. B., J. Finnan, & T. R. Hodkinson. 2015. Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. Gcb Bioenergy 7:375–385.
Karti, P. D. M. H., I. Prihantoro, & M. A. Setiana. 2018. Evaluation of arbuscular mycorrhizal fungi inoculum on production and nutrient content of Pennisetum purpureum. Trop. Anim. Sci. J. 41:114-120.
Minson, D. 2012. Forage in Ruminant Nutrition. 1st Ed. Academic Press (Elsevier), Cambridge.
Nadeem, S. M., M. Ahmad, Z. A. Zahir, A. Javaid, & M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32:429–448.
Ngwene, B., E. Gabriel, & E. George. 2013. Influence of different mineral nitrogen sources (NO 3−-N vs. NH 4+-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices–cowpea symbiosis. Mycorrhiza 23:107-117.
Nihorimbere, V., M. Ongena, M. Smargiassi, & P. Thonart. 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc. Envir. 15:327-337.
Nusantara, A. D., R.Y.H. Bertham, & I. Mansur. 2012. Bekerja dengan Fungi Mikoriza Arbuskula. SEAMEO BIOTROP, Bogor. [22 October 2020].
Pacioni, G. 1992. 16 Wet-sieving and decanting techniques for the extraction of spores of vesicular-arbuscular fungi. Methods Microbiol. 24:317-322.
Pandey, V., M. W. Ansari, S. Tula, S. Yadav, R. K. Sahoo, N. Shukla, G. Bains, S. Badal, S. Chandra, A. K. Gaur, A. Kumar, A. Shukla, J. Kumar, & N. Tuteja. 2016. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243:1251–1264.
Pozo, M. J., J. A. López‐Ráez, C. Azcón‐Aguilar, & J. M. García‐Garrido. 2015. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbiose. New Phytol. 205:1431–1436.
Shi, H., Y. Wang, Z. Cheng, T. Ye, & Z. Chan . 2012. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. PLoS ONE 7:e53422. 0053422
Smith, F. A. & S. E. Smith. 2013. How useful is the mutualism-parasitism continuum of arbuscular mycorrhizal functioning?. Plant Soil. 363:7–18.
Smith, S. E. & D. J. Read. 2010. Mycorrhizal Symbiosis. Academic Press, Cambridge.
Sun, X. F., Y. Y. Su, Y. Zhang, M. Y. Wu, Z. Zhang, K. Q. Pei, L. F. Sun, S. Q. Wan, & Y. Liang. 2013. Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland. Chin. Sci. Bull. 58:4109–4119.
Tilman, D. 2020. Plant Strategies and the Dynamics and Structure of Plant Communities. (MPB-26). Vol. 26. Princeton University Press, New Jersey.
Umami, N., A. Abdiyansah, & A. Agus. 2019. Effects of different doses of NPK fertilization on growth and productivity of Cichorium intybus. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, Yogyakarta. p. 12097.
Yang, Y., Y. Liang, X. Han, T. Y. Chiu, A. Ghosh, H. Chen, & M. Tang. 2016. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree - herb interactions in Pb contaminated soil. Sci. Rep. 6:20469.
Zhang, Q., R. Yang, J. Tang, H. Yang, S. Hu, & X. Chen. 2010. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE 5:e.12380.


M. Husein
N. Umami (Primary Contact)
A. Pertiwiningrum
M. M. Rahman
D. Ananta
HuseinM., UmamiN., PertiwiningrumA., RahmanM. M., & AnantaD. (2022). The Role of Arbuscular Mycorrhizal Fungi Density and Diversity on the Growth and Biomass of Corn and Sorghum Forage in Trapping Culture. Tropical Animal Science Journal, 45(1), 37-43.

Article Details