The Properties of Wet Blue Added Crude Enzyme from Rhizopus oligosporus in the Acid Bating Process

A. W. Nugraha, O. Suparno, N. S. Indrasti, Hoerudin


Bating is one of the processes in leather production. This process is generally performed under slightly alkaline conditions, but it can also be done under acidic conditions. Rhizopus oligosporus is categorized as a microorganism that can synthesize acidic enzymes optimally in acidic conditions. This study aimed to evaluate the effect of the bating process using acid protease from R. oligosporus on the leather qualities tanned by chromium sulfate. The study used a completely randomized design where crude enzyme activity (0, 2.5, 5, 7.5, and 10 U mL-1) was a single treatment as an experimental design. Data were analyzed using ANOVA and furtherly tested using Duncan. The results show that the protease synthesized from R. oligosporus is potential to be used as a bating agent. The treatment with 2.5 U mL-1 activity was the best treatment in this study to improve leather (wet blue) properties like shrinkage temperature, ash content, and chrome oxide content. The quality of wet blue produced was better than that produced with conventional treatments. It can be concluded that the enzyme activity of 2.5 U mL-1 could be used as a bating-agent alternative in the acid bating stage.


Al Mamun, M. A., M. M. Khan, M. N. R. Akand, S. N. Khan, & M. M. Hoq. 2015. Characterization of an alkaline protease with high quality bating potential in leather processing from bacillus licheniformis MZK05M9 mutant. Int. J. Biol. Res. 3:36–41.
AOAC. 2019. Official methods of analysis of AOAC international 21st ed. AOAC International. Gaithersburg, Maryland.
APHA. 2017. Standard Methods for The Examination of Water and Wastewater. 23th ed. APHA, AWWA, WPCF, Washington.
Biskauskaite, R., V. Valeikiene, & V. Valeika. 2021. Enzymes for leather processing: effect on pickling and chroming. Mater 14:1-11.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
BSN (Badan Standarisasi Nasional). 2011. SNI 4593:2011 Kulit Jaket Domba/Kambing. BSN, Jakarta. (In Indonesian)
Castro, R. J. S. & H. H. Sato. 2014. Protease from Aspergillus oryzae: Biochemical characterization and application as a potential biocatalyst for production of protein hydrolysates with antioxidant activities. J. Food Process. 2014:1-11.
Cheba, B. A., T. I. Zaghloul, A. R. El-Mahdy, & M. H. El-Masrry. 2017. Effect of carbon sources on Bacillus sp. R2 chitinase production. Adv. Environ. Biol. 11:75 - 80.
Cheba, B. A., T. I. Zaghloul, A. R. El-Mahdy, & M. H. El-Masrry. 2018. Effect of nitrogen sources and fermentation conditions on Bacillus sp R2 chitinase production. Procedia Manuf. 22:280-287.
Chhaya, U. & A. Gupte. 2013. Effect of different cultivation conditions and inducerson the production of laccase by the litter-dwelling fungalisolate Fusarium incarnatum LD-3 under solidsubstrate fermentation. Ann. Microbol. 63:215-223.
Covington, A. D. & W. R. Wise. 2019. Tanning Chemistry: The Science of Leather. 2nd ed. RSC Publising, UK.
De Souza, F. R. & Gutterres. 2012. Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes. Braz. J. Chem. Eng. 29:473-481.
Hasan, E. A., M. T. Ibrahim, & K. A. Sally. 2014. Optimisation of chrome retanning process to the garad (Acacia nilotica) tanned leather. J. Agric. Vet. Sci. 15:87-94.
Hidayati, A., P. H. Riyadi, & L. Rianingsih. 2015. The effect of bating agent from ragi tempe (Rhizopus oligosphorus) to the quality of nila (Oreochromis niloticus) leather. Indonesian Journal of Fisheries Science and Technology 11:26-33.
Irfan, M., A. Rauf, Q. Syed, M. Nadeem, & S. Baig. 2011. Exploitation of different agro-residues for acid protease production by Rhizopus sp in koji fermentation. IJAVMS 5:43-52.
Karmini, N. R., C. Hemachender, J. G. S. Mala, & R. Puvanakrishnan. 1999. Microbial enzyme technology as an alternative to conventional chemical in leather industry. Curr. Sci. 77:80-86.
Kesarwani, P., S. Jahan, & K. Kesarwani. 2015. A review of leather processing. Int. J. Appl. Res. 1:977-982.
Lennartsson, P. R., M. J. Taherzadeh, & L. Edebo. 2014. Rhizopus. In: C. A. Batt, M. L. Tortorello (Eds). Encyclopedia of Food Microbiology (Second edition). Academic Press, Cambridge. p. 284-290.
M’hir, S., A. Mejri, I. Sifaoui, M. B. Slama, M. Mejri, P. Thonart, & M. Hamdi. 2012. Improvment of protase production by Rhizopus oryzae CH4 grown on wheat gluten using response methodology and its scale-up in a bioreactor. Arch. Appl. Sci. Res. 4:1110-1116.
Mann, B. R. & M. M. McMillan. 2017. The chemistry of leather industry.
Mushtaq, Z., M. Irfan, M. Nadeem, M. Naz, & Q. Syed. 2015. Kinetics study of extracellular detergent stable alkaline protease from Rhizopus ozyzae. Braz. Arch. Biol. Technol. 58:175–184.
Nahas, E. 1998. Control of lipase production by Rhizopus oligosporus under various growth conditions. J. Gen. Microbiol. 134:227-233.
Nasr, A. I. 2017. Reusing limed fleshing wastes as a fatliquoring in leather processing. Egypt J. Chem. 60:919-928.
Nugraha, A. W., O. Suparno, & N. S. Indrasti. 2019. Water reuse strategy in leather tannery process. Int. J. Recent Technol. Eng. 7:958-964.
Nugraha, A. W., O. Suparno, N. S. Indrasti, & Hoerudin. 2020. Free ammonia deliming: effect of tartaric addition as a deliming agent on the quality of wet blue and wastewater. Trop. Anim. Sci. J. 43:176-182.
Puvanakrishnan, R., S. Sivasubramanian, & T. Hemalatha. 2019. Microbial Technology: Concepts and Applications. MJP Publishers, Chennai - India.
Rauf, A., M. Irfan, M. Nadeem, I. Ahmed, & H. M. N. Iqbal. 2010. Optimization of growth conditions for acidic protease production from Rhizopus oligosporus through solid state fermentation of sunflower meal. World Acad. Sci. Eng. Technol. 4:608-611.
Schropfer, M., E. Klurer, & M. Meyer. 2014. Influence of elastin degradation on the mechanical properties of leather. J. Am. Leather Chem. Assoc. 109:306-313.
Sharma, A. K. & S. P. Singh. 2016. Effect of amino acids on the repression of alkaline protease synthesis in haloalkaliphilic Nocardiopsis dassonvillei. Biotechnol. Rep. 12:40-51.
Singh, A. K., & M. Mukhopadhyay. 2012. Overview of fungal lipase: a review. Appl. Biochem. Biotechnol. 166:484-520.
SLTC. 1996. Official methods of analysis. SLTC, Northampton.
Song, Y., S. Wu, Q. Yang, H. Liu, Y. Zeng, B. Shi. 2019. Factors affecting mass transfer of protease in pelt during enzymatic bating process. J. Leather Sci. Eng. 1:4.
Sumarlin, L. O., D. Mulyadi, Suryatna, & Y. Asmara. 2013. Identification of potential lipase and cellulase on waste of skin fruit by fermentation. Jurnal Ilmu Pertanian Indonesia 18:159-166.
Taylor, M. M., M. B. Medina, J. Lee, L. P. Bumanlag, N. P. Latona, E. M. Brown, & C. K. Liu. 2013. Treatment of hides with tara-modified protein products. J. Am. Leather Chem. Assoc. 108: 438 - 448.
Ullah, S., C. Ai, S. Huang, J. Zhang, L. Jia, J. Ma, W. Zhou, & P. He. 2019. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in upland soil. PLoS ONE 14:1-19.
Vaseghi, Z., G. D. Najafpour, S. Mohseni, & S. Mahjoub. 2013. Production of active lipase by Rhizopus oryzae from sugarcane bagasse: Solid state fermentation in a tray bioreactor. Int. J. Food Sci. Technol. 48:283-289.
Waseem A., S. Ali, & S. W. Khalid. 2018. Enchanced production of an extracellular lipase by EMS and MMS - induced mutant strain of Rhizopus oligosporus EM-7 using almond meal as a basal substrate. Pak. J. Zool. 50:1929-1935.
Zengin G. & A. Afsar. 2011. Use of natural fat emulsion in fatliquoring process and investigation of fatty spue formation. J. Am. Leather Chem. Assoc. 106:83-91.


A. W. Nugraha (Primary Contact)
O. Suparno
N. S. Indrasti
NugrahaA. W., SuparnoO., IndrastiN. S., & Hoerudin. (2022). The Properties of Wet Blue Added Crude Enzyme from Rhizopus oligosporus in the Acid Bating Process. Tropical Animal Science Journal, 45(1), 104-111.

Article Details