Improved Maturation Rate of Bovine Oocytes Following Sericin Supplementation in Collection and Maturation Media
Abstract
Sericin is a water-soluble protein produced by silk cocoons and known to have antioxidant activity. This study is aimed to analyze the nuclear maturation and the quality of bovine oocytes in the collection and in vitro maturation (IVM) medium supplemented with sericin. Bovine oocytes were collected using a collection medium supplemented with sericin in 0 (control) concentrations, 0.1%, 0.5%, and 1%. Selected oocytes were then matured for 24 h at 38.5 oC in 5% CO₂ and evaluated for nuclear maturation. In the subsequent experiment, oocytes were collected and matured with or without 0.1% sericin at 38.5 oC in 5% CO2. Matured oocytes were counterstained with terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) and Hoechst 33342. Matured oocytes were characterized by oocytes that reached the MII stage. The results showed that supplementation of 0.1% sericin in the collection medium increased the number of oocytes reaching the metaphase II (MII) stage compared to the control group (p<0.05). In the next experiment, sericin 0.1% in the collection and in vitro maturation media increased (p<0.05) the percentage of oocytes reaching the MII stage compared to control without sericin supplementation. Furthermore, the number of fragmented DNA in the oocytes showed no differences in all groups. It can be concluded that supplementation of 0.1% sericin in the collection and in vitro maturation media improved the nuclear status without affecting DNA fragmentation.
References
Ajduk, A. & M. Zernacka-Goetz. 2013. Quality control of embryo development. Mol. Aspects Med. 34:903-918. https://doi.org/10.1016/j.mam.2013.03.001
Cetica, P. D., L. N. Pintos, G. C. Dalvit, & M. T. Beconi. 2001. Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life 51:57-64. https://doi.org/10.1080/15216540119253
Chlapanidas, T., S. Faragò, G. Lucconi, S. Perteghella, M. Galuzzi, M. Mantelli, M. A. Avanzini, M. C. Tosca, M. Marazzi, & D. Vigo. 2013. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int. J. Biol. Macromol. 58:47-56. https://doi.org/10.1016/j.ijbiomac.2013.03.054
Dash, R., C. Acharya, P. C. Bindu, & S. C. Kundu. 2008. Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Rep. 41:236-241. https://doi.org/10.5483/BMBRep.2008.41.3.236
Fan, Z., M. Yang, M. Regouski, & I. A. Polejaeva. 2017. Effects of three different media on in vitro maturation and development, intracellular glutathione and reactive oxygen species levels, and maternal gene expression of abattoir-derived goat oocytes. Small Rumin. Res. 147: 106-114. https://doi.org/10.1016/j.smallrumres.2016.12.041
Febretrisiana, A., M. A. Setiadi, & N. W. K. Karja. 2015. Nuclear maturation rate of sheep oocytes in vitro: effect of storage duration and ovary temperature. J. Indones. Trop. Anim. Agric. 40:93-99. https://doi.org/10.14710/jitaa.40.2.93-99
Granger, D. N. & P. R. Kvietys. 2015. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 6:524-551. https://doi.org/10.1016/j.redox.2015.08.020
Gustina, S., H. Hasbi, N. W. K. Karja, M. A. Setiadi, & I. Supriatna. 2017. Ultrastructure changes in buffalo (Bubalus bubalis) oocytes before and after maturation in vitro with sericin. Anim. Sci. J. 88: 1911-1915. https://doi.org/10.1111/asj.12839
Gustina, S., N. W. K. Karja, H. Hasbi, M. A. Setiadi, & I. Supriatna. 2019. Hydrogen peroxide concentration and DNA fragmentation of buffalo oocytes matured in sericin-supplemented maturation medium. S. Afr. J. Anim. Sci. 49:227-234. https://doi.org/10.4314/sajas.v49i2.3
Hoshino, Y. 2018. Updating the markers for oocyte quality evaluation: Intracellular temperature as a new index. Reprod. Med. Biol. 17:434:441. https://doi.org/10.1002/rmb2.12245
Hosoe, M., N. Yoshida, Y. Hashiyada, H. Teramoto, T. Takahashi, & S. Nimura. 2014. Sericin accelerates the production of hyaluranon and decreases the incidence of polyspermy fertilization in bovine oocytes during in vitro maturation. J. Reprod. Develop. 60:268-273. https://doi.org/10.1262/jrd.2013-110
Isobe, T., Y. Ikebata, T. Onitsuka, M. Wittayarat, Y. Sato, M. Taniguchi, & T. Otoi. 2012. Effect sericin on preimplantation development of bovine embryos cultured individually. Theriogenology 78:747-752. https://doi.org/10.1016/j.theriogenology.2012.03.021
Isobe, T., Y. Ikebata, L. T. K. Do, F. Tanihara, M. Taniguchi, & T. Otoi. 2014. In vitro development of OPU-derived bovine embryos cultured either individually or in groups with the silk protein sericin and the viability of frozen-thawed embryos after transfer. Anim. Sci. J. 86: 661-665. https://doi.org/10.1111/asj.12341
Jagannathan, L., S. Cuddapah, & M. Costa. 2016. Oxidative stress under ambient and physiological oxygen tension in tissue culture. Curr. Pharmacol. 2:64-72. https://doi.org/10.1007/s40495-016-0050-5
Jiao, G-Z., X-Y. Cao, W. Cui, H-Y. Lian, Y-L. Miao, X-F. Wu, D. Han, & J-H. Tan. 2013. Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. PLoS ONE 8:e58018. https://doi.org/10.1371/journal.pone.0058018
Karja, N. W. K., K. Kikuchi, M. Fahrudin, M. Ozawa, T. Somfai, K. Ohnuma, J. Oguchi, H. Kaneko, & T. Nagai. 2006. Development to the blastocyst stage, the oxidative state, and the quality of early development stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions. Reprod. Biol. Endocrinol. 4:54. https://doi.org/10.1186/1477-7827-4-54
Kato, N., S. Sato, A. Yamanaka, H. Yamada, N. Fuwa, & M. Nomura. 1998. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci. Biotechnol. Biochem. 62:145-147. https://doi.org/10.1271/bbb.62.145
Khazaei, M. & F. Aghaz. 2017. Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes. Int. J. Fertil. Steril. 11:63-70. https://doi.org/10.22074/ijfs.2017.4995
Kodiha M. & U. Stochaj. 2012. Nuclear transport: A switch for the oxidative stress-signaling circuit?. J. Signal Transduct. 1-18. https://doi.org/10.1155/2012/208650
Lee, J., E. J. Kim, H. S. Kong, H. W. Youm, S. K. Kim, J. R. Lee, C. S. Suh, & S. H. Kim. 2018. Comparison of the oocyte quality derived from two-dimensional follicle culture methods and developmental competence of in vitro grown and matured oocytes. Biomed Res. Int. 2018:1-11. https://doi.org/10.1155/2018/7907092
Lobo, V., A. Patil, A. Phatak, & N. Chandra. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4:119-126. https://doi.org/10.4103/0973-7847.70902
Nagyova, E. 2018. The biological role of hyaluronan-rich oocyte-cumulus extracellular matrix in female reproduction. Int. J. Mol. Sci. 19:1-14. https://doi.org/10.3390/ijms19010283
Patterson, J.C., B. A. Joughin, B. v. d. Kooij, D. C. Lim, D. A. Lauffenburger, & M. B. Yaffe. 2019. ROS and oxidative stress are elevated in mitosis during asynchronous cell cycle progression and are exacerbated by mitotic arrest. Cell Syst. 8:163-167. https://doi.org/10.1016/j.cels.2019.01.005
Salustri, A., L. Campagnolo, F. G. Klinger, & A. Camaioni. 2017. Molecular organization and mechanical properties of the hyaluronan matrix surrounding the mammalian oocyte. Matrix Biol. https://doi.org/10.1016/j.matbio.2018.02.002
Terada, S., T. Nishimura, M. Sasaki, H. Yamada, & M. Miki. 2002. Sericin, a protein derived from silkworms, accelerates the proliferation of several mamalian cell lines including hybridoma. Cytotechnology 40:3-12. https://doi.org/10.1023/A:1023993400608
Tiwari, M., S. Prasad, A. Tripathi, A. N. Pandey, I. Ali, A. K. Singh, T.G. Shrivastav, & S. K. Chaube. 2015. Apoptosis in mammalian oocytes: A review. Apoptosis 20:1019-1025. https://doi.org/10.1007/s10495-015-1136-y
Wang, S., G. He, M. Chen, T. Zou, W. Xu, & X. Liu. 2017. The role of antioxidant enzymes in the ovaries. Oxid. Med. Cell. Longev. 2017:1-14. https://doi.org/10.1155/2017/4371714
Wang, Y., R. Branicky, A. Noe, & S. Hekimi. 2018. Superoxide dismutase: Dual roles in controlling ROS damage and regulating ROS Signaling. J. Cell Biol. 217:1915-1928. https://doi.org/10.1083/jcb.201708007
Wang, Y. S., X. Zhao, J. M. Su, Z. X. An, X. R. Xiong, L. J. Wang, J. Liu, F. S. Quan, S. Hua, & Y. Zhang. 2011. Lowering storage temperature during ovary transport is benefical to the developmental competence of bovine oocytes used for somatic cell nuclear transfer. Anim. Reprod. Sci. 124:48-54. https://doi.org/10.1016/j.anireprosci.2011.01.015
Yasmin, C., T. Otoi, M. A. Setiadi, & N. W. K. Karja. 2015. Maturation and fertilisation of sheep oocytes cultured in serum-free medium containing silk protein sericin. Acta Vet. Hung. 63:110-117. https://doi.org/10.1556/avet.2015.009
Yokoo, M., N. Kimura, & E. Sato. 2010. Induction of oocyte maturation by hyaluronan-CD44 interaction in pigs. J. Reprod. Develop. 56:15-19. https://doi.org/10.1262/jrd.09-173E
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.