Polymorphism and Association of DMA Gene with Total IgY Concentration and ND Antibody Titer in IPB-D2 Chicken Line
Abstract
The DMA (DM α chain) gene, a member of non-classical MHC class II plays an important role in the process of presenting antigen peptides by producing DM protein. This study aimed to identify the polymorphism of DMA gene and their associations with disease resistance traits such as total IgY concentration and ND antibody titers in IPB-D2 chicken line. The total sample used was 101 chickens consisted of 81 IPB-D2 G0 chickens (53 female and 28 male) and 20 SENSI-1 chickens (15 female and 5 male). Blood samples were collected at 21 weeks old for genotyping, total IgY concentration analysis, and ND antibody titer analysis. SENSI-1 chickens were used as a comparison in the analysis of DMA gene polymorphism. The method for DNA polymorphism of DMA gene was direct-DNA sequencing. The total IgY concentration was analyzed using the indirect ELISA method, while the ND antibody titer used the HI test. Data were analyzed using GLM, genotypic, and haplotype mean values compared with t-test. The results showed that 4 SNPs were found, i.e., g.2328 G>A (exon 3), g.2503 A>G (intron 3), g.2612 G>A, and g.2686 G>A (exon 4). The SNPs of DMA gene were found polymorphic with three genotypes (GG, AG, and GG), and the expected SNP g.2503 A>G only had two genotypes (AA and GG). The g.2328 G>A was associated (p<0.05) with total IgY concentration. A combination of 4 SNPs formed 7 haplotypes. Haplotype 1 was associated with total IgY concentration (p<0.05), and haplotype 5 was associated with ND antibody titer (p<0.05). In conclusion, the g.2328 G>A mutation and haplotype 1 could be potentially recommended as a genetic marker for high total IgY concentration, and haplotype 5 could be potentially recommended as a genetic marker for ND antibody titer in IPB-D2 chicken line.
References
Al-Habib, M. F., S. Murtini, A. Gunawan, N. Ulupi, & C. Sumantri. 2020. Polymorphism of CD1B gene and its association with yolk immunoglobulin (IgY) concentration and Newcastle disease antibody titer in IPB-D1 chicken. Trop. Anim. Sci. J. 43:197-204. https://doi.org/10.5398/tasj.2020.43.3.197
Al-Habib, M. F., S. Murtini, L. Cyrilla, I. I. Arief, R. Mutia, & C. Sumatri. 2020. Performa pertumbuhan ayam IPB-D1 pada perlakuan pakan dan manajemen pemeliharaan yang berbeda. J. Agripet. 20:177-186. https://doi.org/10.17969/agripet.v20i2.16375
Allendorf, F. W. & G. H. Luikart. 2007. Conservation and The Genetics of Populations. Blackwell Publishing, Oxford.
Benito, M. A., M. Wieczorek, J. Sticht, C. Kipar, & C. Freund. 2015. HLA-DMA polymorphisms differentially affect MHC class II peptide loading. J. Immunol. 194:803-816. https://doi.org/10.4049/jimmunol.1401389
Bharathi, I., R. Manohar, & P. Shamsudeen. 2016. Selection methods for disease resistance in poultry - An Overview. Int. J. Sci. Environ. Technol. 5:810-815.
Butler, J. M. 2010. Fundamentals of Forensic DNA Typing. Elsevier, California.
Chazara, O., M. Tixier-Boichard, V. Morin, R. Zoorob, & B. Bed’Hom. 2011. Organization and diversity of the class II DM region of the chicken MHC. Mol. Immunol. 48:1263-1271. https://doi.org/10.1016/j.molimm.2011.03.009
Ching, A. K. S. Caldwell, M. Jung, M. Dolan, O. S. Smith, S. Tingey, M. Morgante, & A. J. Rafalski. 2002. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet. 3:1-14. https://doi.org/10.1186/1471-2156-3-19
Dar, M. A., P. T. Mumtaz, S. A. Bhat, M. Nabi, Q. Taban, R. A. Shah, H. M. Khan, & S. M. Ahmad. 2018. Genetics of Disease Resistance in Chicken. In: X. Liu (Eds). Application of Genetics and Genomics in Poultry Science. Chapter 61277. IntechOpen, London. https://doi.org/10.5772/intechopen.77088
Dharmayanti, N. L. P. I., R. Hartawan, D. A. Hewajuli, & R. Inriani. 2014. Phylogenetic analysis of genotype VII of new castle disease virus in Indonesia. Afr. J. Microbiol. Res. 8:1368-1374. https://doi.org/10.5897/AJMR2014.6601
Eybpoosh, S. 2018. Hardy Weinberg equilibrium testing and interpretation focus on infection. J. Med. Microbiol. Infect. Dis. 6:35-36. https://doi.org/10.29252/JoMMID.6.1.35
Goldsby, R. A., T. J. Kindt, & B. A. Osbourne. 2000. Kuby Immunology. WH Freeman, New York.
Graur, D. 2003. Nature Encyclopedia of The Human Genome. Macmillan Publishers Ltd, New York.
Hamilton, M. B. 2009. Population Genetics. John Wiley & Sons, UK.
Indriani, R. & I. Dharmayanti. 2016. Respon titer antibodi dan proteksi virus Newcastle Disease genotype I, II, VI dan VII sebagai vaksin terhadap infeksi isolate virus Newcastle Disease chicken/Indonesia/GTT/11. Jurnal Biologi Indonesia 12:211-218. https://doi.org/10.14203/jbi.v12i2.2887
Jie, H. & Y. P. Liu. 2011. Breeding for disease resistance in poultry: Opportunities with challenges. Worlds Poult. Sci. J. 67:687-696. https://doi.org/10.1017/S0043933911000766
Kapczynski, D. R., C. L. Afonso, & P. J. Miller. 2013. Immune responses of poultry to Newcastle disease virus. Dev. Comp. Immunol. 1-7.
Khan, M., S. Jahan, M. C. Paul, D. Chakraborty, & M. R. Islam. 2009. Development of an Indirect ELISA technique towards detection of antibodies to Infectious Bursal Disease Virus (IBDV) of chickens. Bangladesh Vet. J. 43:8-16.
Khanyile, K. S., E. F. Dzomba, & F. C. Muchadeyi. 2015. Linkage disequilibrium in the estimation of genetic and demographic parameters of extensively raised chicken population. Worlds Poult. Sci. J. 71:505-514. https://doi.org/10.1017/S0043933915002202
Lian, L., L. J. Qu, J. X. Zheng, C. J. Liu, Y. P. Zhang, Y. M. Cheng, G. Y. Xu, & N. Yang. 2010. Expression profiles of genes within a subregion of chicken major histocompability complex B in spleen after Marek’s disease virus infection. Poult. Sci. 89:2123-2129. https://doi.org/10.3382/ps.2010-00919
Linglin, K., Z. Shenghan, C. Ying, Z. Pengfei, W. Yun, G. Qixin, C. Guohong, & C. Guboin. 2017. Comparative analysis of DMA gene sequences in different chicken breeds. Acta Agriculturae Zhejiangensis 29:60-565. https://doi.org/10.3969/j.issn.1004-1524.2017.04.07
Mahdieh, N. & B. Rabbani. 2013. An overview of mutation detection methods in genetic disorders. Iran J. Pediatr. 23:375-388.
Miller, M. M. & R. L. Taylor. 2016. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contribution to disease resistance. Poult. Sci. 95:375-392. https://doi.org/10.3382/ps/pev379
Oberlander, B., K. Failing, C. M. Jungst, N. Neuhaus, M. Kierz, & F. M. Paula-Ribes. 2020. Evaluation of Newcastle Disease antibody titers in backyard poultry in Germany with a vaccination interval of twelve weeks. PLoS ONE 15:1-14. https://doi.org/10.1371/journal.pone.0238068
Parker, A. & J. Kaufman. 2017. What chickens might tell us about the MHC class II system. Immunology 46:23-29. https://doi.org/10.1016/j.coi.2017.03.013
Rahman, M. Mostafijur, Sarker, R. Deb, & M. Nooruzzaman. 2017. Evaluation of serum antibody titer level against Newcastle disease virus in vaccinated broiler chickens. AVAS 4:94-98.
Stumpf, M. P. H. 2004. Haplotype diversity and SNP frequency dependence in the description of genetic variation. Eur. J. Hum. Genet. 12:469-477. https://doi.org/10.1038/sj.ejhg.5201179
Tizard, I. R. 2013. Veterinary Immunology. Elsevier Saunder, China.
Ulupi, N., C. Sumantri, & S. Darwati. 2016. Resistance against Salmonella pullorum in IPB-D1 crossbreed, kampong and commercial broiler chicken. The 1st Conference Technology on Bioscience and Social Science 2016. Universitas Andalas, Padang.
Wang, Q., F. Wang, L. Liu, Q. Lie, R. Liu, M. Zheng, H. Cui, J. Wen, & G. Zhao. 2019. Genetic mutation analysis of high and low IgY chickens by capture sequencing. Animals 9:1-10. https://doi.org/10.3390/ani9050272
Zhao, Q., H. Sun, Z. Zhang, Z. Xu, B. S. Olesege, P. Ma, Z. Zhang, Q. Wang, & Y. Pan. 2019. Exploring the structure of haplotype blocks and genetic diversity in Chinese Indigenous pig populations for conservation purpose. Evol. Bioinform. 15:1-8. https://doi.org/10.1177/1176934318825082
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.