Molecular Detection and Antibiogram of ESBL-Producing and Carbapenem-Resistant Escherichia coli from Rabbit, Swine, and Poultry in Malaysia
Abstract
The emergence of multidrug-resistance Enterobacteriaceae such as extended-spectrum β-lactamase (ESBL) producing Escherichia coli (E. coli) and carbapenem-resistant E. coli (CREC) has become an urgent veterinary and public health threat. These multidrug-resistant microorganisms are frequently associated with diseases that have high mortality with limited treatment options. This study aims to investigate the prevalence of ESBL producing E. coli and CREC from the rabbit, swine, and poultry and to determine the antibiogram profile of these E. coli isolates. In this study, 400 fecal swab samples were collected from rabbits, swine, and poultry from several selected animal farms in Malaysia. After incubation and isolation processes, suspected E. coli isolates were subjected to a PCR test to confirm the identity of the bacteria. The antibiogram of the E. coli isolates was determined via the Kirby Bauer disk diffusion method. A total of 212 (53%) E. coli isolates were isolated from rabbits (51 isolates), poultry (110 isolates), and swine (51 isolates). Screening of antimicrobial resistance genes revealed twelve ESBL producing E. coli (3%; 12/400). Two ESBL producing E. coli were also carrying carbapenemase gene (BlaNDM), indicating ESBL producing and carbapenem-resistant E. coli (ESBL-CREC) in poultry fecal swab samples. The bacteria isolates were found to show resistance against nine antibiotics, including ertapenem, ampicillin, and amoxicillin-clavulanate. A total of 3.3% (7/212) of the E. coli isolates were found to be multidrug-resistance. This study demonstrated the presence of ESBL-producing E. coli and ESBL-producing CREC from poultry fecal swabs in Malaysia.
References
Abayneh, M., G. Tesfaw, & A. Abdissa. 2018. Isolation of extended-spectrum β- lactamase-(ESBL-) producing Escherichia coli and Klebsiella pneumoniae from patients with community-onset urinary tract infections in Jimma University Specialized Hospital, Southwest Ethiopia. Can. J. Infect. Dis. Med. Microbiol. 2018:4846159. https://doi.org/10.1155/2018/4846159
Abd El Tawab, A. A., S. A. Abd El Aal, E. M. Mazied, & D. A. EL Morsy. 2015. Prevalence of E. coli in broiler poultrys in winter and summer seasons by application of PCR with its antibiogram pattern. BVMJ 29:119-128. https://doi.org/10.21608/bvmj.2015.31683
Ariffin, S., N. Hasmadi, N. M, Syawari, M. Z. Sukiman, M. F. T. Ariffin, M. H. Chai, & Ghazali, M. 2019. Prevalence and antibiotic susceptibility pattern of Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli in dairy goats with clinical and subclinical mastitis. J. Anim. Health Prod. 7:32-37. https://doi.org/10.17582/journal.jahp/2019/7.1.32.37
Ariffin, M. F. T., N. Hasmadi, M.H. Chai, M. F. Ghazali, Z. Suhaili, & S. M. Z. Ariffin. 2020. Prevalence and antimicrobial sensitivity pattern of Staphylococcus aureus isolated from clinical and subclinical mastitis in small ruminant in Besut and Setiu, Terengganu, Malaysia. Malays. J. Microbiol. 16:104-110. https://doi.org/10.21161/mjm.180328
Baran, A., M. C. Adigüzel, & M. Yüksel. 2020. Prevalence of antibiotic-resistant and extended-spectrum beta-lactamase-producing Escherichia coli in chicken meat from Eastern Turkey. Pak. Vet. J. 40:355-359. https://doi.org/10.29261/pakvetj/2020.047
Brink, A. J., J. Coetzee, C. Corcoran, C. G. Clay, D. Hari-Makkan, R. K. Jacobson, G. A. Richards, C. Feldman, L. Nutt, J. van Greune, J. D. Deetlefs, K. Swart, L. Devenish, L. Poirel, & J. D. Deetlefs. 2013. Emergence of OXA-48 and OXA-181 carbapenemases among Enterobacteriaceae in South Africa and evidence of in vivo selection of colistin resistance as a consequence of selective decontamination of the gastrointestinal tract. J. Clin. Microbiol. 51:369-372. https://doi.org/10.1128/JCM.02234-12
Chai, M. H., M. F. T. Ariffin, S. M. Z. Ariffin, Z. Suhaili, M. Z. Sukiman, & M. F. Ghazali. 2020. Prevalence of methicillin resistant Staphylococcus aureus in raw goat milks from selected farms in Terengganu, Malaysia. Trop. Anim. Sci. J. 43:64-69. https://doi.org/10.5398/tasj.2020.43.1.64
Chishimba, K., B. M. Hang’Ombe, K. Muzandu, S. E. Mshana, M. I. Matee, C. Nakajima, & Y. Suzuki. 2016. Detection of extended-spectrum beta-lactamase- producing Escherichia coli in market-ready chickens in Zambia. Int. J. Microbiol. 2016. https://doi.org/10.1155/2016/5275724
CLSI. 2018. Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA.
Codjoe, F. & E. Donkor. 2017. Carbapenem Resistance: A Review. Med. Sci. 6:1. https://doi.org/10.3390/medsci6010001
Eldin, W. F. S. & L. M. Reda. 2016. Prevalence of diarrheagenic Escherichia coli in suckling rabbits. Jpn. J. Vet. Res. 64(Suppl. 2): S149-S153.
Grundmann, H., C. Glasner, B. Albiger, D. M. Aanensen, C. T. Tomlinson, A. T. Andrasević, R. Cantón, Y. Carmeli, A. W. Friedrich,C. G. Giske, & Y. Glupczynski. 2017. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase- producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect. Dis. 17:153-163.
Hosuru Subramanya, S., I. Bairy, N. Nayak, R. Amberpet, S. Padukone, Y. Metok, D. R. Bhatta, & B. Sathian. 2020. Detection and characterization of ESBL- producing Enterobacteriaceae from the gut of healthy poultrys, Gallus gallus domesticus in rural Nepal: Dominance of CTX-M-15-non-ST131 Escherichia coli clones. PLoS ONE 15:e0227725. https://doi.org/10.1371/journal.pone.0227725
Lugsomya, K., J. Yindee, W. Niyomtham, C. Tribuddharat, P. Tummaruk, D. J. Hampson, & N. Prapasarakul. 2018. Antimicrobial resistance in commensal Escherichia coli isolated from swines and pork derived from farms either routinely using or not using in-feed antimicrobials. Microb. Drug Resist. 24:1054-1066. https://doi.org/10.1089/mdr.2018.0154
Köck, R., I. Daniels-Haardt, K. Becker, A. Mellmann, A. W. Friedrich, D. Mevius, S. Schwarz, & A. Jurke. 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clin. Microbiol. Infect. 24:1241-1250. https://doi.org/10.1016/j.cmi.2018.04.004
Kpoda, D. S., A. Ajayi, M. Somda, O. Traore, N. Guessennd, A. S. Ouattara, L. Sangare, A. S. Traore, & Dosso, M. 2018. Distribution of resistance genes encoding ESBLs in Enterobacteriaceae isolated from biological samples in health centers in Ouagadougou, Burkina Faso. BMC Res. Notes. 11:471. https://doi.org/10.1186/s13104-018-3581-5
Liu, B. T., X. Y. Zhang, S. W. Wan, J. J. Hao, R. D. Jiang, & F. J. Song. 2018. Characteristics of carbapenem-resistant Enterobacteriaceae in ready-to-eat vegetables in China. Front. Microbiol. 9:1147. https://doi.org/10.3389/fmicb.2018.01147
Lugsomya, K., J. Yindee, W. Niyomtham, C. Tribuddharat, P. Tummaruk, D. J. Hampson, & Prapasarakul, N. 2018. Antimicrobial resistance in commensal Escherichia coli isolated from pigs and pork derived from farms either routinely using or not using in-feed antimicrobials. Microb. Drug Resist. 24:1054-1066. https://doi.org/10.1089/mdr.2018.0154
Magiorakos, A. P., A. Srinivasan, R. T. Carey, Y. Carmeli, M. T. Falagas, C. G. Giske, S. Harbarth, J. F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, D. L. Paterson, L. B. Rice, J. Stelling, M. J. Struelens, A. Vatopoulos, J. T. Weber, & D. L. Monneta. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18:268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Meletis, G. 2016. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 3:15-21. https://doi.org/10.1177/2049936115621709
Mogheiseh, A., A. Derakhshandeh, S. Heidarifar, & E. Bandariyan. 2020. Direct endoscopic lavage and biopsy sampling and evaluation of uterine microflora in various stages of the canine estrous cycle. Vet. Res. Forum. 11:89.
Nahar, A., S. P. Awasthi, N. Hatanaka, K. Okuno, P. H. Hoang, J. Hassan, A. Hinenoya, & S. Yamasaki. S. 2018. Prevalence and characteristics of extended- spectrum β-lactamase-producing Escherichia coli in domestic and imported poultry meats in Japan. J. Vet. Med. Sci. 80:510-517. https://doi.org/10.1292/jvms.17-0708
Naas, T., G. Cuzon, P. Bogaerts, Y. Glupczynski, & P. Nordmann. 2011. Evaluation of a DNA microarray (Check-MDR CT102) for rapid detection of TEM, SHV, and CTX-M extended-spectrum β-lactamases and of KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases. J. Clin. Microbiol. 49:1608-1613. https://doi.org/10.1128/JCM.02607-10
Rahman, S. U., S. Ahmad, & I. Khan. 2018. Incidence of ESBL-producing-Escherichia coli in poultry farm environment and retail poultry meat. Pak. Vet. J. 39:116-20. https://doi.org/10.29261/pakvetj/2018.091
Ramos, S., V. Silva, M. D. L. E. Dapkevicius, M, Caniça, M. T. Tejedor-Junco, G. Igrejas, G, & P. Poeta. 2020. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals 10:2239. https://doi.org/10.3390/ani10122239
Rasool, U., S. Priya, A. Parveen, S. K. Sah, & S. Hemalatha. 2018. Efficacy of Andrographis paniculata against extended spectrum β-lactamase (ESBL) producing E. coli. BMC Complement. Altern. Med. 18:1-9. https://doi.org/10.1186/s12906-018-2312-8
Rodríguez-Baño, J., B. Gutiérrez-Gutiérrez, I. Machuca, & A. Pascual. 2018. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Rev. 31. https://doi.org/10.1128/CMR.00079-17
Sawa, T., K. Kooguchi, & K. Moriyama. 2020. Molecular diversity of extended- spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J. Intensive Care. 8:13. https://doi.org/10.1186/s40560-020-0429-6
Scott, H. M., G. Acuff, G. Bergeron, M. W. Bourassa, J. Gill, D. W. Graham, L. H. Kahn, P. S. Morley, M. J. Salois, S. Simjee, R. S. Singer, T. C. Smith, C. Storrs, & T. E. Wittum. 2019. Critically important antibiotics: Criteria and approaches for measuring and reducing their use in food animal agriculture. Ann. N. Y. Acad. Sci. 1441:8. https://doi.org/10.1111/nyas.14058
Suay-García, B. & M. T. Pérez-Gracia. 2019. Present and future of carbapenem- resistant Enterobacteriaceae (CRE) infections. Antibiotics 8:122. https://doi.org/10.3390/antibiotics8030122
Tian, X., S. Sun, X. Jia, H. Zou, S. Li, & L. Zhang. 2018. Epidemiology of and risk factors for infection with extended-spectrum β-lactamase-producing carbapenem- resistant Enterobacteriaceae: results of a double case-control study. Infect. Drug Resist. 11:1339. https://doi.org/10.2147/IDR.S173456
Wang, Y., C. Wu, Q. Zhang, J. Qi, H. Liu, Y. Wang, T. He, L. Ma, J. Lai, Z. Shen, Y. Liu, & J. Shen. 2012. Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS ONE 7:e37152. https://doi.org/10.1371/journal.pone.0037152
Yassin, A. K., J. Gong, P. Kelly, G. Lu, L. Guardabassi, L. Wei, X. Han, H. Qiu, S. Price, D. Cheng, & C. Wang. 2017. Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China. PLoS ONE 12:e0185326. https://doi.org/10.1371/journal.pone.0185326
Zhang, B., Ku, X., Yu, X., Sun, Q., Wu, H., Chen, F., X. Zhang, L. Guo, X. Tang, & Q. He. 2019. Prevalence and antimicrobial susceptibilities of bacterial pathogens in Chinese swine farms from 2013 to 2017. Sci. rep. 9:1-11. https://doi.org/10.1038/s41598-019-45482-8
Zhao, X., J. Yang, Z. Ju, W. Chang, & S. Sun. 2018. Molecular characterization of antimicrobial resistance in Escherichia coli from rabbit farms in Tai’an, China. Biomed. Res. Int. 2018: 8607647. https://doi.org/10.1155/2018/8607647
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.