Body Resistance and Growth Performance of Broiler Fed Glucomannan Extracted from Amorphophallus onchophyllus Tuber
Abstract
The purpose of the study was to examine the supplementation effects of glucomannan extracted from a porang tuber (GEPT) on body resistance and growth performance of broiler chickens. A total number of 160 one-day-old broiler chickens with the average body weight of 42.39±0.58 g was kept for 35 days. The study was arranged in a completely randomized design with 5 treatments and 4 replications (8 birds each). The dietary treatments were T0= basal ration, T1= basal ration with the addition of 0.05% GEPT, T2= basal ration with the addition of 0.1% GEPT, T3= basal ration with the addition of 0.15% GEPT, and T4= basal ration with the addition of 0.2% GEPT. Parameters measured were the population of lactic acid bacteria (LAB), Coliform count, relative weight of lymphoid organs (bursa fabricius and spleen), heterophils-lymphocytes (H/L) ratio, body weight gain, feed consumption, feed conversion ratio, and mortality. Data were subjected to analysis of variance (ANOVA) and continued with Duncan Multiple Range Test (DMRT) at 5% probability. The results showed that supplementation of the diets with GEPT significantly increased (P<0.05) LAB population, decreased (P<0.05) Coliform count in the jejunum and ileum, and H/L ratio, but did not affect the relative weight of lymphoid organs, and growth performance. In conclusion, diet added with 0.1% GEPT improved the balance of intestinal microflora and increased body resistance, without any negative effects on the lymphoid organs and growth performance of broiler chickens.
References
Bogusławska-Tryk, M., R. Szymeczko, A. Piotrowska, K. Burlikowska, & K. Slizewska. 2015. Ileal and cecal microbial population and short-chain fatty acid profile in broiler chickens fed diets supplemented with lignocellulose. Pak. Vet. J. 35:212-216.
Bolton, W. 1967. MAFF Bulletin. No.174. Poultry Nutrition. HMSO, London.
Bozkurt, M., K. Kucukyilmaz, A. U. Catli, M. Cinar, E. Bintas, & F. Coven. 2012. Performance, egg quality, and immune response of laying hens fed diets supplemented with mannan-oligosaccharide or an essential oil mixture under moderate and hot environmental conditions. Poult. Sci. 91:1379-1386. https://doi.org/10.3382/ps.2011-02023
Bukhari, S. M., M. Iram, T. Lijie, M. Sunting, H. L. Mang, G. Abbas, I. Baboo, & Y. Li. 2017. Coherence and colonization characteristics of recombinant Lactobacillus under simulated gastric conditions within chicken GI tract and its impact on chicken growth. Pak. Vet. J. 37:381-386.
Chauhan, P. S., N. Puri, P. Sharman, & N. Gupta. 2012. Mannasases: microbial sources, production, properties and potential biotechonological applications. Appl. Microbiol. Biotechnol. 93: 1817-1830. https://doi.org/10.1007/s00253-012-3887-5
Elrayeh, A. S. & G. Yildiz. 2012. Effects of inulin and β-glucan supplementation in broiler diets on growth performance, serum cholesterol, intestinal length, and immune system. Turk. J. Vet. Anim. Sci. 36:388-394.
Fajrih, N., N. Suthama, & V. D. Yunianto. 2014. Body resistance and productive performances of crossbred local chicken fed inulin of Dahlia tubers. Med. Pet. 37:108-114. https://doi.org/10.5398/medpet.2014.37.2.108
Fardiaz, S. 1993. Analisis Mikrobiologi Pangan. Raja Grafindo Persada, Jakarta.
Gross, W. B. & H. S. Siegel. 1983. Evaluation of heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. 27:972-979. https://doi.org/10.2307/1590198
Harmayani, E., V. Aprilia, & Y. Marsono. 2014. Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo. Carbohydr. Polym. 112:475–479. https://doi.org/10.1016/j.carbpol.2014.06.019
Hosseini, S. M., H. Nazarizadeh, S. Ahani, & M. V. Azghandi. 2016. Effects of mannan oligosaccharide and Curcuma xanthorrhiza essential oil on the intestinal morphology and stress indicators of broilers subjected to cyclic heat stress. Arch. Anim. Breed. 59:285–291. https://doi.org/10.5194/aab-59-285-2016
Houshmand, M., K. Azhar, I. Zulkifli, M. H. Bejo, & A. Kamyab. 2012. Effects of prebiotic, protein level, and stocking density on performance, immunity and stress indicators of broilers. Poult. Sci. 91:393–401. https://doi.org/10.3382/ps.2010-01050
Kermanshahi, H., M. D. Shakouri, & A. Daneshmand. 2018. Effect of non-starch polysaccharides in semi-purified diet on performance, serum metabolites, gastrointestinal morphology and microbial population of male broiler chickens. Livest. Sci. 214:93-97. https://doi.org/10.1016/j.livsci.2018.04.012
Kim, G. B., Y. M. Seo, C. H. Kim, & I. K. Paik. 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 90:75–82. https://doi.org/10.3382/ps.2010-00732
Kohl, K. D. 2012. Diversity and function of the avian gut microbiota. J. Comp. Phys. B. 182:591–602. https://doi.org/10.1007/s00360-012-0645-z
Li, S. P., X. J. Zhao, J. Y. Wang. 2009. Synergy of Astragalus polysaccharides and probiotics (Lactobacillus and Bacillus cereus) on immunity and intestinal microbiota in chicks. Poult. Sci. 88:519-25. https://doi.org/10.3382/ps.2008-00365
Mellata, M., K. Ameiss, H. Mo, & R. Curtiss. 2010. Characterization of the contribution to virulence of three large plasmids of avian pathogenic Escherichia coli χ7122 (O78:K80:H9). Infect. Immun. 78:1528–1541. https://doi.org/10.1128/IAI.00981-09
Markovi, R., D. Sefer, M. Krstic, & B. Petrujkic. 2009. Effect of different growth promoters on broiler performance and gut morphology. Arch. Med. Vet. 41:163-169. https://doi.org/10.4067/S0301-732X2009000200010
Mateova, S., J. Saly, M. Tuckova, J. Koscova, R. Nemcova, M. Gaalova, & D. Baranova. 2008. Effect of probiotics, prebiotics and herb oil on performance and metabolic parameters of broiler chickens. Medycyna Wet. 64:294-297.
Meimandipour, A., A. Soleimanifarjam, K. Azhar, M. Hair-Bejo, M. Shuhaimi, Leyla Nateghi, & A. M. Yazid. 2011. Age effects on short chain fatty acids concentrations and pH values in the gastrointestinal tract of broiler chickens. Arch. Geflugelk. 75:164-168.
Mikkelson, A., H. Maaheimo, & T. K. Hakala. 2013. Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Carbohydr. Research. 372:60-68. https://doi.org/10.1016/j.carres.2013.02.012
Mokoena, M. P. 2017. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and appliccations against uropatogens. Mol. 22:1-13. https://doi.org/10.3390/molecules22081255
NRC. 1994. Nutrient Requirements of Poultry. 9th revised ed. National Academic Press, Washington DC.
Philip, P., D. Kern, J. Goldmanns, F. Seiler, A. Schulte, T. Habicher & J. Buchs. 2018. Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask. Microb. Cell Fact. 17:1-17. https://doi.org/10.1186/s12934-018-0917-8
Pourabedin, M. & Z. Zhao. 2015. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett. 362:1-8. https://doi.org/10.1093/femsle/fnv122
Pourabedin, M, L. Guan & X. Zhao. 2015. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome 3:1-12. https://doi.org/10.1186/s40168-015-0079-4
Rebole, A., L. T. Ortiz, M. L. Rodríguez, C. Alzueta, J. Treviño, & S. Velasco. 2010. Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet. Poult. Sci. 89:276–286. https://doi.org/10.3382/ps.2009-00336
Ruminska, E., A. Koncicki, & T. Stenzel. 2008. Structure and function of the avian immune system in birds. Medycyna Wet. 64:265-268.
Sarangi, N. R., L. K. Babu,A. Kumar, C. R. Pradhan, P. K. Pati, & J. P. Mishra. 2016. Effect of dietary supplementation of prebiotic, probiotic, and synbiotic on growth performance and carcass characteristics of broiler chickens. Vet. World. 9:313-319. https://doi.org/10.14202/vetworld.2016.313-319
Saeed, M., F. Ahmad, M. A. Arain, M. E. Abd El-Hack, M. Emam, Z. A. Butto, & A. Moshaveri. 2017. Use of mannan-oligosaccharides (MOS) as a feed additive in poultry nutrition. J. World Poult. Res. 7:94-103.
Sellaoui, S., N. Alloui, S. Mehenaoui, & S. Djaaba. 2012. Evaluation of immune status of the chicken using morphometry and histology of the bursa of fabrisius. J. Vet. Adv. 2:440-443.
Sethy, K., S. K. Mishra, P. P. Mohanty, J. Agarawal, P. Meher, D. Satapathy , J. K. Sahoo, S. Panda, & S. M. Nayak. 2015. An overview of non starch polysaccharide. J. Anim. Nutr. Physiol. 1:17-22.
Shini, S., P. Kaiser, A. Shini, & W. L. Bryden. 2008. Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 149:324-333. https://doi.org/10.1016/j.cbpb.2007.10.003
Steel, R. G. D, & J. H. Torrie. 1991. Prinsip dan Prosedur Statistika Suatu Pendekatan Biometrik. 2nd ed. Terjemahan. PT Gramedia Pustaka Tama, Jakarta.
Tester, R. F. & F. H. Al-Ghazzewi. 2013. Mannans and health, with a special focus on glucomannans. Food Res. Int. 50:384-391. https://doi.org/10.1016/j.foodres.2012.10.037
Wright, A. V. & L. Axelsson. 2011. Lactic Acid Bacteria: An Introduction. In: S. Lahtinne, S. Salminen, A. Von Wright & A. Ouwehand, Eds., Lactic Acid Bacteria: Microbiological and Functional Aspects. CRC Press, London. pp. 1-17. https://doi.org/10.1201/b11503
Yang, Y., P. A. Iji & M. Choct. 2009. Dietary modulation of gut microflora in broiler chickens: a review of the role of size kinds of altrnatives to in-feed antibiotics. Worlds Poult. Sci. J. 65:97-114. https://doi.org/10.1017/S0043933909000087
Yanuriati, A., D.W. Marseno, Rochmadi, & E. Harmayani. 2017. Characteristics of glucomannan isolated from fresh tuber of Porang (Amorphophallus muelleri Blume). Carbohydr. Polym. 156:56-63. https://doi.org/10.1016/j.carbpol.2016.08.080
Zhang, Y.Q., B. J. Xie, & X. Gan. 2005. Advance in the applications of konjac glucomannan and its derivatives, Carbohydr. Polym. 60:27–31. https://doi.org/10.1016/j.carbpol.2004.11.003
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.