Effect of Cricket Meal (Gryllus bimaculatus) on Production and Physical Quality of Japanese Quail Egg
Abstract
Feed cost contributes 80% of the total cost of production in quails. The utilization of cricket meal as a protein source can be a solution to reduce feed costs. The cricket has a high nutritive value, especially protein content, and is one of potential insects to be used as a source of alternative protein to replace fish meal in animal diet. This study aimed to evaluate the effect of cricket meal on the production and physical quality of japanese quail egg (Coturnix coturnix japonica). The experiment used 200 five-week-old female quails with an average body weight of 125.4 g. The completely randomized design (CRD) was employed for the experiments with 5 treatments and 4 replications (10 birds per replication). The dietary treatments were T0: diet without cricket meal, T1: diet containing 2% cricket meal to replace 25% of fish meal, T2: diet containing 4% cricket meal to replace 50% of fish meal, T3: diet containing 6% cricket meal to replace 75% of fish meal, and T4: diet containing 8% cricket meal to replace 100% of fish meal. Results revealed that utilization of cricket meal in the quail ration significantly increased egg production (P<0.05) and positively affected physical quality of quail eggs, such as egg weight, egg white weight, eggshell weight, and yolk score. It can be concluded that cricket meal can partially or fully replace fish meal in the diet of layer quails.
References
Abbasi, M. A., A. H. Mahdavi, A. H. Samie, & R. Jahanian. 2014. Effects of different levels of dietary crude protein and threonine on performance, humoral immune responses and intestinal morphology of broiler chicks. R. Braz. Ci. Solo 16:35-44. https://doi.org/10.1590/S1516-635X2014000100005
Abu, O., I. Olaleru, T. Oke, V. Adepegba, & B. Usman. 2015. Performance of broiler chicken fed diets containing cassava peel and leaf meals as replacements for maize and soya bean meal. Int. J. Sci. Technol. 4: 169-173.
Bovera, F., G. Piccolo, L. Gasco, S. Marono, R. Laponte, G. Vassalotti, V. Mastellone, P. Lombardi, Y. A. Attia, & A. Nizza. 2015. Br. Poult. Sci. 56: 569-575.
Bovskova, H., K. Mikova, & Z. Panovska. 2014. Evaluation of egg yolk colour. Czech J. Food Sci. 32: 213-217. https://doi.org/10.17221/47/2013-CJFS
Brand, Z., T. S. Brand, & C. R. Brown. 2003. The effect of dietary and protein levels on production in breeding female ostrich. Br. Poult. Sci. 44:589-606. https://doi.org/10.1080/00071660310001618343
Brownawell, A. M., W. Caers, G. R. Gibson, C. W. C. Kendall, K. D. Lewis, Y. Ringel, & J. L. Slavin. 2012. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. The Journal of Nutrition. 142: 962-974. https://doi.org/10.3945/jn.112.158147
Campbell, J. R., M D. Kenealy, & K. L. Campbell. 2009. Animal science: The biology, care, and production of domestic animals (4th Ed.). McGraw-Hill Book Co. Inc. New York.
Carolyne, K., J. N. Kinyuru, S. Imathiu, & N. Roos. 2017. Use of cricket house to address food security in Kenya: Nutrient and chitin compotition of farmed crickets as influenced by age. Afr. J. Agric. Res. 12: 3189-3197. https://doi.org/10.5897/AJAR2017.12687
Dewi, S. H. C., & J. Setiohadi. 2010. The effect of the usage of silkworms (Bombyx mori) pupae in rations on male quail performance. J. Agri. Sains. 1: 1-6.
Duman, M., A. Ṣekeroglu, A. Yildirim, H. Eleroglu, & O. Camci. 2015. Relation between egg shape index and egg quality characteristics. Eur. Poult. Sci. 80: 1612-9199.
Esfahani-Mashhour, M., H. Moravej, H. Mehrabani-Yeganeh, & S. H. Razavi. 2009. Evaluation of coloring potential of Dietzia natronolimnaea bimassa as source of canthaxanthin for egg yolk pigmentation. Asian-Aust. J. Anim. Sci. 22: 254-259.
Fuah, A. M., H. C. H. Siregar, & Y. C. Endrawati. 2015. Cricket farming for animal protein as profitble business for small farmers in Indonesia. J. Agric. Sci. Tech. 5: 296-304.
Hilmi, M., Sumiati, & D. A. Astuti. 2015. Egg production and physical quality in Coturnix coturnix japonica fed diet containing piperin as phytogenic feed additive. Med. Pet. 38: 150-155. https://doi.org/10.5398/medpet.2015.38.3.150
Hincke, M. T., Y. Nys, J. Gautron, K. Mann, A. B. Rodriguez-Navarro, & M. D. McKee. 2012. The eggshell: structure, composition and mineralization. Frontiers in Bioscience 17: 1266-1266. https://doi.org/10.2741/3985
Hrncar, C., E. Hanusova, A. Hanus, & J. Bujko. 2014. Effect of genotype on egg quality characteristics of Japanese quail (Coturnix japonica). Slovak J. Anim. Sci. 47: 6-11.
Jayanegara, A., N. Yantina, E. B. Laconi, Nahrowi, & M. Ridla. 2017. Evaluation of some insects as potential feed ingredients for ruminants: chemical composition, in vitro rumen fermentation and methane emissions. J. Indonesian Trop. Anim. Agric. 42: 247-254. https://doi.org/10.14710/jitaa.42.4.247-254
Ketta, M., & E. Tumova. 2016. Eggshell structure, measurements, and quality-affecting factors in laying hens: a review. Czech J. Anim. Sci. 61: 299-309. https://doi.org/10.17221/46/2015-CJAS
Khairani, Sumiati, & K. G. Wiryawan. 2016. Egg production and quality of quails fed diet with varying levels of methionine and choline chloride. Med. Pet. 39: 34-39. https://doi.org/10.5398/medpet.2016.39.1.34
Kvassay, G. 2014. The complete cricket breeding manual: revolutionary new cricket breeding systems. Zega Enterprises, New South Wales.
Leeson, S., & J. D. Summers. 2005. Commercial Poultry Nutrition (3th Ed.). Nottingham University Press, England.
Makkar, H. P. S., G. Tran, V. Heuze, & P. Ankers. 2014. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 197: 1-3. https://doi.org/10.1016/j.anifeedsci.2014.07.008
Makund, K. M. 2006. Response of laying japanese quail to dietary calcium levels at two levels energy. J. Poult. Sci. 43: 351-356. https://doi.org/10.2141/jpsa.43.351
Miech, P., J. E. Lindberg, A. Berggren, T. Chhay, & A. Jansson. 2017. Apparent facal digestibility and nitrogen retention in piglets fed whole and peeled Cambodian field cricket meal. Journal of Insect as Food and Feed. 3: 279-287. https://doi.org/10.3920/JIFF2017.0019
Mousavi, S. J., S. Khalaji, A. Ghasemi-Jirdehi, & F. Foroudi. 2013. Investigation on the effects of dietary protein reduction with constant ratio of digestble sulfur amino acids and threonine to lysine on performance, egg quality and protein retention in two strains of laying hens. Italian J. Anim. Sci. 12: 9-15. https://doi.org/10.4081/ijas.2013.e2
Premalatha, M., T. Abbasi, & S. A. Abbasi. 2011. Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects. Renew Sustain Energy Rev. 15: 4357-4360. https://doi.org/10.1016/j.rser.2011.07.115
Rahmasari, R., Sumiati, & D.A. Astuti. 2014. The effect of silkworm pupae (Bombyx mori) meal to subtitute fish meal on production and physical quality of quail eggs (Coturnix coturnix japonica). J. Indonesian Trop. Anim. Agric. 39: 180-187. https://doi.org/10.14710/jitaa.39.3.180-187
Ricardo, U., K. Anura, K. Tano-Debrah, A. A. Grant, T. Yasuhiko, & G. Shibani. 2015. Role of protein and amino acids in infant and young child nutrition: Protein and mino acid needs and relationship with child growth. J. Nutr. Sci. Vitaminol. 61: 192-194. https://doi.org/10.3177/jnsv.61.S192
Sanchez-Muros, M., F. G. Barroso, & F. Manzano-Agugliaro. 2014. Insect meal as renewble source of food for animal feeding - a review. J. Clean Prod. 65: 16-27.
Shen, T. F., & W. L. Chen. 2003. The role of magnesium and calcium in eggshell formation in Tsaiya ducks and leghorn hens. Asia-Australian J. Anim. Sci. 16: 290-296.
SPSS. 2012. IBM SPSS Statistics for Windows (Version 21.0 ed.), IBM Corp., Armonk, NY.
Tolik, D., E. Polawska, A. Charutta, S. Nowaczewski, & R. Cooper. 2014. Characteristics of egg parts, chemical compotition and cutritive value of japanese quail eggs – a review. Folia Biol. (Pl). 62:287-292. https://doi.org/10.3409/fb62_4.287
Tserveni-Goussi, A., & P. Fortomaris. 2011. Production and quality of quail, pheasant, goose and turkey eggs for uses other than human consumption. In: Y. Nys, M. Bain, & Fv. Immerseel (Eds). Woodhead Pub., Ltd., Cambrige. https://doi.org/10.1533/9780857093912.4.509
Van Huis, A. 2013. Potential of insects as food and feed in assuring food security. Ann. Rev. Entomol. 58:563-583. https://doi.org/10.1146/annurev-ento-120811-153704
Wang, D., Y. B. Yao, J. H. Li, & C. X. Zhang. 2004. Nutriotional value of the field cricket (Gryllus testaceus Walker). Insect Sci. 11: 275-283. https://doi.org/10.1111/j.1744-7917.2004.tb00424.x
Wang, D., W. Z. Shao, X. Z. Chuan, Y. B. Yao, A. Shi Heng, & N. X. Ying. 2005. Evaluation of nutritional value of field crickets as a poultry feedstuff. Aust. J. Anim. Sci. 5: 667-670. https://doi.org/10.5713/ajas.2005.667
Zita, L., Z. Ledvinka, L. Klesalová, & T. Japanese. 2013. The effect of the age of japanese quails on certain egg quality traits and their relationships. Vet Archiv. 83: 223-232.
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.