Potensi rumput vetiver (Chrysopongon zizanoides L.) dan kangkung (Ipomoea aquatica Forsk.) sebagai agen fitoremediasi limbah industri kayu
Abstract
Wood industry produces a large amount of waste water that contains various pollutants. These pollutants are mostly dangerous for the environment. This research work aims to analyze the ability of phytoremediation for reducing pollutants in wood industrial waste water. These experiments usee Chrysopongon zizanoides L. and Ipomoea aquatica Forsk as phytoremediation agents. The ability was evaluated from the improved quality of wood industrial wastewater and the growth rate of C. zizanioides (L.) and I. aquatica Forsk in wood industrial wastewater. Analysis was conducted by measuring the removal efficiency of pollutants in wood industrial wastewater, the correlation between the reduced pollutants concentrations in the waste water and plant growth rate. Furthermore, a mathematical model is developed to predict the potential of C. zizanioides (L.) and I. aquatica Forsk for wood industrial wastewater. The result showed that C.zizanioides L. and I aquatica Forsk were potential phytoremediation agent. The removal efficiency for C.zizanioides L. and I aquatica Forsk are respectively as follows: 66.19% and 41.18%, TSS 58.51% and 45.38%, COD 70.07% and 40.37%, Total Amonia Nitrogen (TAN) 63.70% and 66.96%, NH3 96.16% and 88.79%, and PO43- 53.90% and 38.38%. Relative Growth Rate (RGR) of C. zizanioides (0.011±0.002 g/day) is better than I. aquatica Forsk (0.007±0.001 g/day). Daily Growth Rate (DGR) of C. zizanioides (0.019±0.003 cm/day) is better than I. aquatica Forsk (0.012±0.006 cm/day). TSS, COD, NH3, NO3-, and phenol have a negative correlation to plant growth (based on wet weight and root length). The developed mathematical models can be used to predict the phytoremediation potential of C. zizanioides (L.) and I. aquatica Forsk in degrading COD, TSS, and phenols of wood industrial waste.
References
[APHA] 2012. Standard Methods for the Examination of Water and Wastewater, 22nd edition.
[KLHK] Kementrian Lingkungan Hidup Republik Indonesia. 2014. Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 tentang Baku Mutu Air Limbah. Jakarta: Kementrian LH.
Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM, 2003. Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures. J. Biotechnol. Appl. Biochem. 37: 139–144.
Aibibu N, Yunguo L, Guangming Z, Xin W, Beibei C, Huaxio S, Li X. 2010. Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresource Technology. 101(1): 6297–6303.
Alaerts G, Santika SS. 1987. Metode Penelitian Air. Surabaya: Penerbit Usaha Nasional.
Araujo BS, Charlwood BV, Pletsch M. 2002. Tolerance and metabolism of phenol and chloroderivatives by hairy root cultures of Daucus carota L. Int. Jurnal Environ Pollut. 117(2): 329–335.
Boyd CE. 1990. Water Quality in Ponds for Aquaculture. Brimingham: Birmingham Publishing Co.
Chen JC, Wang KS, Chen H, Lu CY, Huang LC, Li HC, Peng TH, Chang SH. 2010. Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: effects of Cr speciation. J. Biotechnol. 101(9): 3033-3039.
Crab R, Avnimelech Y, Defoidt T, Bossier P, Verstraete. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. J. Aquaculture. 270: 1-14.
Delis PC, Effendi H, Krisanti M, Hariyadi S. 2015.Treatment of aquaculture wastewater using Vetiveria zizanioides (Liliopsida, Poaceae). Int. J. ACCL Bioflux. 8(4): 616-625.
Effendi H, Utomo BA, Darmawangsa GM, Karo-Karo RE. 2015. Fitoremediasi limbah budidaya ikan lele (Clarias sp) dengan kangkung (Ipomoea aquatica) dan pakcoy (Brassica rapa chinensis) dalam sistem resirkulasi. J. Ecolab. 9:47-104.
Effendi H. 2003. Telaah Kualitas limbah cair Bagi Pengelolaan Sumberdaya dan Lingkungan Perairan. Yogyakarta: Kanisius.
Fachrurozi M, Utami LB, Suryani D. 2010. Pengaruh variasi biomassa Pistia stratiotes L. terhadap penurunan kadar BOD, COD, dan TSS limbah cair tahu di Dusun Klero Sleman Yogyakarta. J. Kesmas. 4(1): 12-13.
Ghanem KM, Al-Garni SM, Al-Shehri AN. 2009. Statistical optimization of cultural conditions by response surface methodology for phenol degradation by a novel Aspergillus flavus isolate. J Biotechnol. 8: 3576-3583.
Gunawan, H. 2009. Efisiensi penghilangan detergen dari limbah cuci pakaian oleh tanaman eceng gondok (Eichhornia crassipes) dan kiambang (Salvinia molesta) [skripsi]. Surabaya: Unversitas Surabaya.
Heriyanto. 2006. Pengaruh rasio COD/TKN pada proses denitrifikasi limbah cair industri perikanan dengan lumpur aktif [Skripsi]. Bogor: Perikanan dan Ilmu Kelautan IPB.
Hu MH, Ao YS, Yang XE, Li TQ. 2008. Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsk) in a deep flow technique system. J. Agric. Water Manag. 95: 607-615.
Hunt R. 2017. Growth Analysis, Individual Plants. Encyclopedia. Appl. Plant Sciences. 1: 421-429.
Ibanez SG, Alderete LGS, Medina MI, Agostini E. 2012. Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response. Environmental Science and Pollution Research. 19(5): 1555-1562.
Indah LS, Hendrarto B, Soedarsono P. 2014. Kemampuan eceng gondok (Eichhornia sp), kangkung (Ipomoea sp), dan kayu apu (Pistia sp) dalam menurunkan bahan organik limbah industri tahu (skala laboratorium). J. Diponegoro of Maquares. 3(1): 1–6.
Jampeetong A, Brix H, Kantawanichkul S. 2012. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). J. Aquatic Botany. 97: 10-16.
Jha P, Jobby R, Kudale S, Modi N, Dhaneshwar A, Desai N. 2013. Biodegradation of phenol using hairy roots of Helianthus annuus L. International Biodeterioration and Biodegradation. 77: 106-113.
Khan S, Ahmad I, Shah MT, Rehman SH, Khaliq A. 2009.Use of constructed wetland for the removal of heavy metals from industrial wastewater.J. Environ Manage. 90: 3451.
Klibanov AM, Tu TM, Scott KP. 1983. Peroxidase catalysed removal of phenol from coal-conversion waste waters. J. Science. 221: 259–261.
Kumar K, Dube KK, Rai JPN. 2005. Mathematical model for phytoremediation of pulp and paper industry wastewater. J. Sci. Ind. Res. 64: 717-721.
Lee SY, Ahmad SA, Mustapha SR, Abdullah JO. 2017. Ability of Ipomoea aquatica Forssk. to remediate phenol in water and effects of phenol on the plant’s growth. J. Sci. & Technol. 25(2): 441 – 452.
Lestari W. 2013. Penggunaan Ipomoea aquatica Forsk.untuk fitoremediasi limbah rumah tangga. Semirata 2013 FMIPA Universitas Lampung. Lampung, Indonesia. pp: 441–446.
Ma H, Li G, Fang P, Zhang Y, Xu D. 2010. Identification of phenol-degrading Nocardia sp. strain C-14-1 and characterization of its ring-cleavage 2,3- dioxygenase. International Journal of Biology. 2:79-83.
Mulia MR. 2005. Kesehatan Lingkungan. Jakarta: Graha Ilmu.
Nair CI, Jayachandran K, Shashidar S. 2008. Biodegradation of phenol. African Journal of Biotechnology 7: 4951- 4958.
Pinto G, Pollio A, Previtera L, Temussi F. 2002. Biodegradation of phenols by microalgae. Biotechnology Letters. 24: 2047–2051.
Purnamawati. 2015. Penurunan kadar rhodamin B dalam air limbah dengan biofiltrasi sistem tanaman [tesis]. Bali: Pascasarjana Universitas Udayana.
Putri FDM, Widyastuti E, Christiani. 2014. Hubungan perbandingan total nitrogen dan total fosfor dengan kelimpaan Chrysophyta di perairan waduk panglima besar Soedirman, Banjarnegara. J. Scripta biologica. 1(1): 96-101.
Rahadian R, Sutrisno E, Sumiyati S. 2017. Efisiensi penurunan COD dan TSS dengan fitoremediasi menggunakan tanaman kayu apu (Pistia stratiotes L) Studi Kasus: Limbah Laundry. J. Teknik Lingkungan. 3(6): 1-8.
Ratsch HC. 1983. Interlaboratory root elongation testing of toxic substances on selected plant species.J. Env. Protection Agency. 600: 3-85.
Ridha MT, Cruz EM. 2001. Effect of biofilter media on water quality and biological performance of the nile tilapia Oreochromis niloticus L. reared in a simple recirculating system. J. Aquaculture Engineering. 24: 157-166.
Singh S, Melo JS, Eapen S, D’Souza SF. 2006. Phenol removal by Brassica juncea hairy roots: role of inherent peroxidase and H2O2. J. Biotechnol. 123 (1): 43–49.
Singh S, Melo JS, Eapen S, D’Souza SF. 2008. Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol.J. Ecotoxicology and Environmental Safety. 71: 671–676.
Strickland JDH, Parsons TR. 1972. A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada.
Surtiningsih. 2009. Mengenal lebih dekat rumput vetiver. Bul BPKSDM. 2: 16.
Terry N, Banuelos GS. 2010. Phytoremediation of Contaminated Soil and Water. USA: Lewis Publisher.
Truong P. 2000.The global input of vetiver grass technology on the environment. In: Proceedings of the Second International Conference on Vetiver, Bangkok. pp: 46–57.
Wahyuningsih S, Effendi H, Wardiatno Y. 2015. Nitrogen removal of aquaculture wastewater in aquaponic recirculation system.Int. J. ACCL Bioflux. 8(4): 491-499.
Wang G, Wen J, Li M, Qiu C. 2009. Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition. J Ind Microbiol Biotechnol 36: 809–814.
Wang KS, Huang LC, Lee HS, Chen PY, Chang SH. 2008. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. J. Chemosphere. 72(4):666-672.
[KLHK] Kementrian Lingkungan Hidup Republik Indonesia. 2014. Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 tentang Baku Mutu Air Limbah. Jakarta: Kementrian LH.
Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM, 2003. Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures. J. Biotechnol. Appl. Biochem. 37: 139–144.
Aibibu N, Yunguo L, Guangming Z, Xin W, Beibei C, Huaxio S, Li X. 2010. Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresource Technology. 101(1): 6297–6303.
Alaerts G, Santika SS. 1987. Metode Penelitian Air. Surabaya: Penerbit Usaha Nasional.
Araujo BS, Charlwood BV, Pletsch M. 2002. Tolerance and metabolism of phenol and chloroderivatives by hairy root cultures of Daucus carota L. Int. Jurnal Environ Pollut. 117(2): 329–335.
Boyd CE. 1990. Water Quality in Ponds for Aquaculture. Brimingham: Birmingham Publishing Co.
Chen JC, Wang KS, Chen H, Lu CY, Huang LC, Li HC, Peng TH, Chang SH. 2010. Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: effects of Cr speciation. J. Biotechnol. 101(9): 3033-3039.
Crab R, Avnimelech Y, Defoidt T, Bossier P, Verstraete. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. J. Aquaculture. 270: 1-14.
Delis PC, Effendi H, Krisanti M, Hariyadi S. 2015.Treatment of aquaculture wastewater using Vetiveria zizanioides (Liliopsida, Poaceae). Int. J. ACCL Bioflux. 8(4): 616-625.
Effendi H, Utomo BA, Darmawangsa GM, Karo-Karo RE. 2015. Fitoremediasi limbah budidaya ikan lele (Clarias sp) dengan kangkung (Ipomoea aquatica) dan pakcoy (Brassica rapa chinensis) dalam sistem resirkulasi. J. Ecolab. 9:47-104.
Effendi H. 2003. Telaah Kualitas limbah cair Bagi Pengelolaan Sumberdaya dan Lingkungan Perairan. Yogyakarta: Kanisius.
Fachrurozi M, Utami LB, Suryani D. 2010. Pengaruh variasi biomassa Pistia stratiotes L. terhadap penurunan kadar BOD, COD, dan TSS limbah cair tahu di Dusun Klero Sleman Yogyakarta. J. Kesmas. 4(1): 12-13.
Ghanem KM, Al-Garni SM, Al-Shehri AN. 2009. Statistical optimization of cultural conditions by response surface methodology for phenol degradation by a novel Aspergillus flavus isolate. J Biotechnol. 8: 3576-3583.
Gunawan, H. 2009. Efisiensi penghilangan detergen dari limbah cuci pakaian oleh tanaman eceng gondok (Eichhornia crassipes) dan kiambang (Salvinia molesta) [skripsi]. Surabaya: Unversitas Surabaya.
Heriyanto. 2006. Pengaruh rasio COD/TKN pada proses denitrifikasi limbah cair industri perikanan dengan lumpur aktif [Skripsi]. Bogor: Perikanan dan Ilmu Kelautan IPB.
Hu MH, Ao YS, Yang XE, Li TQ. 2008. Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsk) in a deep flow technique system. J. Agric. Water Manag. 95: 607-615.
Hunt R. 2017. Growth Analysis, Individual Plants. Encyclopedia. Appl. Plant Sciences. 1: 421-429.
Ibanez SG, Alderete LGS, Medina MI, Agostini E. 2012. Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response. Environmental Science and Pollution Research. 19(5): 1555-1562.
Indah LS, Hendrarto B, Soedarsono P. 2014. Kemampuan eceng gondok (Eichhornia sp), kangkung (Ipomoea sp), dan kayu apu (Pistia sp) dalam menurunkan bahan organik limbah industri tahu (skala laboratorium). J. Diponegoro of Maquares. 3(1): 1–6.
Jampeetong A, Brix H, Kantawanichkul S. 2012. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). J. Aquatic Botany. 97: 10-16.
Jha P, Jobby R, Kudale S, Modi N, Dhaneshwar A, Desai N. 2013. Biodegradation of phenol using hairy roots of Helianthus annuus L. International Biodeterioration and Biodegradation. 77: 106-113.
Khan S, Ahmad I, Shah MT, Rehman SH, Khaliq A. 2009.Use of constructed wetland for the removal of heavy metals from industrial wastewater.J. Environ Manage. 90: 3451.
Klibanov AM, Tu TM, Scott KP. 1983. Peroxidase catalysed removal of phenol from coal-conversion waste waters. J. Science. 221: 259–261.
Kumar K, Dube KK, Rai JPN. 2005. Mathematical model for phytoremediation of pulp and paper industry wastewater. J. Sci. Ind. Res. 64: 717-721.
Lee SY, Ahmad SA, Mustapha SR, Abdullah JO. 2017. Ability of Ipomoea aquatica Forssk. to remediate phenol in water and effects of phenol on the plant’s growth. J. Sci. & Technol. 25(2): 441 – 452.
Lestari W. 2013. Penggunaan Ipomoea aquatica Forsk.untuk fitoremediasi limbah rumah tangga. Semirata 2013 FMIPA Universitas Lampung. Lampung, Indonesia. pp: 441–446.
Ma H, Li G, Fang P, Zhang Y, Xu D. 2010. Identification of phenol-degrading Nocardia sp. strain C-14-1 and characterization of its ring-cleavage 2,3- dioxygenase. International Journal of Biology. 2:79-83.
Mulia MR. 2005. Kesehatan Lingkungan. Jakarta: Graha Ilmu.
Nair CI, Jayachandran K, Shashidar S. 2008. Biodegradation of phenol. African Journal of Biotechnology 7: 4951- 4958.
Pinto G, Pollio A, Previtera L, Temussi F. 2002. Biodegradation of phenols by microalgae. Biotechnology Letters. 24: 2047–2051.
Purnamawati. 2015. Penurunan kadar rhodamin B dalam air limbah dengan biofiltrasi sistem tanaman [tesis]. Bali: Pascasarjana Universitas Udayana.
Putri FDM, Widyastuti E, Christiani. 2014. Hubungan perbandingan total nitrogen dan total fosfor dengan kelimpaan Chrysophyta di perairan waduk panglima besar Soedirman, Banjarnegara. J. Scripta biologica. 1(1): 96-101.
Rahadian R, Sutrisno E, Sumiyati S. 2017. Efisiensi penurunan COD dan TSS dengan fitoremediasi menggunakan tanaman kayu apu (Pistia stratiotes L) Studi Kasus: Limbah Laundry. J. Teknik Lingkungan. 3(6): 1-8.
Ratsch HC. 1983. Interlaboratory root elongation testing of toxic substances on selected plant species.J. Env. Protection Agency. 600: 3-85.
Ridha MT, Cruz EM. 2001. Effect of biofilter media on water quality and biological performance of the nile tilapia Oreochromis niloticus L. reared in a simple recirculating system. J. Aquaculture Engineering. 24: 157-166.
Singh S, Melo JS, Eapen S, D’Souza SF. 2006. Phenol removal by Brassica juncea hairy roots: role of inherent peroxidase and H2O2. J. Biotechnol. 123 (1): 43–49.
Singh S, Melo JS, Eapen S, D’Souza SF. 2008. Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol.J. Ecotoxicology and Environmental Safety. 71: 671–676.
Strickland JDH, Parsons TR. 1972. A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada.
Surtiningsih. 2009. Mengenal lebih dekat rumput vetiver. Bul BPKSDM. 2: 16.
Terry N, Banuelos GS. 2010. Phytoremediation of Contaminated Soil and Water. USA: Lewis Publisher.
Truong P. 2000.The global input of vetiver grass technology on the environment. In: Proceedings of the Second International Conference on Vetiver, Bangkok. pp: 46–57.
Wahyuningsih S, Effendi H, Wardiatno Y. 2015. Nitrogen removal of aquaculture wastewater in aquaponic recirculation system.Int. J. ACCL Bioflux. 8(4): 491-499.
Wang G, Wen J, Li M, Qiu C. 2009. Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition. J Ind Microbiol Biotechnol 36: 809–814.
Wang KS, Huang LC, Lee HS, Chen PY, Chang SH. 2008. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. J. Chemosphere. 72(4):666-672.
Authors
RahmawanA. J., EffendiH. and SuprihatinS. (2019) “Potensi rumput vetiver (Chrysopongon zizanoides L.) dan kangkung (Ipomoea aquatica Forsk.) sebagai agen fitoremediasi limbah industri kayu”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 9(4), pp. 904-919. doi: 10.29244/jpsl.9.4.904-919.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).