Eksplorasi aktivitas enzimatik dari fungi endofit laut serta aplikasinya untuk hidrolisis kitosan Exploration of enzymatic activity of marine endophyte fungi and its application for chitosan hydrolysis
Abstract
Marine endophytic fungi are fungi associated with tissues of marine organisms, such as seaweed, coral, seagrass, sponges, and sediments in the marine environment. Fungi can produce extracellular enzymes, including cellulase, amylase, pectinase, chitosanase, lipase, and protease. This study aimed to determine the potential of fungal isolates to produce chitosanolytic, cellulolytic, and proteolytic activities for the degradation of chitosan. Marine endophytic fungal isolates were obtained from seaweed, seagrass, and mangroves from the waters of the Sukabumi and Buton Islands, Indonesia. Twenty fungal isolates were screened for enzymatic activity (chitosanolytic, cellulolytic, and proteolytic) using the agar diffusion method to determine the diameter of the clear zone produced. The hydrolysis process was carried out by inoculating the isolates into hydrolysis media containing colloidal chitosan for seven days. The results showed that 12 isolates had chitosanolytic activity, 8 had cellulolytic activity, and 10 had proteolytic activity. Five isolates showed activity against all tested enzymes. Two isolates with codes KVA and BM48A had the highest chitosanolytic clear zone diameter. Isolates were identified by DNA Barcoding as species with strains Trichoderma harzianum KTR3 and Aspergillus sydowii KTR50. The yields of the chitosan hydrolysate were 7.44% and 6.74%, respectively. Meanwhile, the viscosity values produced were 21.1 cP and 9.26 cP and the molecular weight values were 9.06 kDa and 4.47 kDa. The enzymatic activity produced by marine endophytic fungal isolates has the ability to degrade chitosan, as evidenced by the decrease in the viscosity and molecular weight of chitosan.
References
Aguila-Almanza, E., Salgado-Delgado, R., Vargas-Galarza, Z., García-Hernández, E., & Hernández-Cocoletzi, H. (2019). Enzymatic depolimerization of chitosan for the preparation of functional membranes. Journal of Chemistry, 1, 1-8. https://doi.org/10.1155/2019/5416297
Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 19, 1-27. https://doi.org/10.3390/polym13193256
Bhadra, F., Gupta, A., Vasundhara, M., & Reddy, M. S. (2022). Endophytic fungi: a potential source of industrial enzyme producers. 3 Biotech, 12(4), 1-9. https://doi.org/10.1007/s13205-022-03145-y
Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2021). Marine natural products. Natural Product Reports, 38(2), 362-413. https://doi.org/10.1039/D0NP00089B
Chattopadhyay, D. P., & Inamdar, M. S. (2010). Aqueous behaviour of chitosan. International Journal of Polymer Science, 1, 1-7.https://doi.org/10.1155/2010/939536.
Chen, R. H., & Tsaih, M. L. (1998). Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. Biological Macromolecules, 23(2), 135-141. https://doi.org/10.1016/S0141-8130(98)00036-1
Dastogeer, K. M., Li, H., Sivasithamparam, K., Jones, M. G. K., & Wylir. S. J. (2018). Host specificity of endophytic mycobiota of wild nicotiana plants from Arid regions of Northern Australia. Microbial Ecology, 75, 74–87. https://doi.org/10.1007/s00248-017-1020-0
Ebadi, M., Ahmadi, F., Tahmouresi, H., Pazhang, M., & Mollaei, S. (2024). Investigation the biological activities and the metabolite profiles of endophytic fungi isolated from Gundelia tournefortii L. Scientific Reports, 14(1), 1-11. https://doi.org/10.1038/s41598-024-57222-8
El-Bondkly, E. A. M., El-Bondkly, A. A. M., & El-Bondkly, A. A. M. (2021). Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon, 7(3), 1-15. https://doi.org/10.1016/j.heliyon.2021.e06362
Elgammal, E. W., El-Khonezy, M. I., Ahmed, E. F., & Abd-Elaziz, A. M. (2020). Enhanced production, partial purification, and characterization of alkaline thermophilic protease from the endophytic fungus Aspergillus ochraceus BT21. Egyptian Pharmaceutical Journal, 19(4), 338-349. https://doi.org/10.4103/epj.epj_31_20
Fadli, A., Drastinawati, D., Alexander O., & Huda, F. (2018). Pengaruh rasio massa kitin/NaOH dan waktu reaksi terhadap karakteristik kitosan yang disintesis dari limbah industri udang kering. Journal Sains Materi Indonesia, 18(2), 61-67 https://doi.org/10.17146/jsmi.2017.18.2.4166.
Farouk, H. M., Attia, E. Z., & El-Katatny, M. M. H. (2020). Hydrolytic enzyme production of endophytic fungi isolated from soybean (Glycine max). Journal Modern Research, 2(1), 1-7. https://dx.doi.org/10.21608/jmr.2019.15748.1008
Gonçalves, C. G. E., Lourenço, L. D. F. H., Philippsen, H. K., Santos, A. S., Santos, L. N. D., & Ferreira, N. R. (2023). Crude enzyme concentrate of filamentous fungus hydrolyzed chitosan to obtain oligomers of different sizes. Polymers, 15(9), 1-16. https://doi.org/10.3390/polym15092079
Guo, R., Li, G., Zhang, Z., & Peng, X. (2022). Structures and biological activities of secondary metabolites from Trichoderma harzianum. Marine Drugs, 20(11), 1-17. https://doi.org/10.3390/md20110701
Handayani, D., Ananda, N., Artasasta, M. A., Ruslan, R., Fadriyanti, O., & Tallei, T. E. (2019). Antimicrobial activity screening of endophytic fungi extracts isolated from brown algae Padina sp. Journal of Applied Pharmaceutical Science, 9(3), 9-13. https://doi.org/ 10.7324/JAPS.2019.90302
Hariati, S., Wahjuningrum, D., Yuhana, M., Tarman, K., Effendi, I., & Saputra. F. (2018). Aktivitas antibakteri ekstrak kapang laut Nodulisporium sp. KT29 terhadap Vibrio harveyi. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 250-257. https://doi.org/10.17844/jphpi.v21i2.22855
Hokken, M. W. J., Zwaan, B. J., Melchers, W. J. G., & Verweij, P. E. (2019). Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genetics and Biology, 132, 1–13. https://doi.org/10.1016/j.fgb.2019.103254
Ibrahim, S. R., Mohamed, S. G., Alsaadi, B. H., Althubyani, M. M., Awari, Z. I., Hussein, H. G., Aljohani, A. A., Albasri, J. F., Faraj, S. A., & Mohamed, G. A. (2023). Secondary metabolites, biological activities, and industrial and biotechnological importance of Aspergillus sydowii. Marine Drugs, 21(8), 1-53. https://doi.org/10.3390/md21080441
Isti'anah, I., Tarman, K., Suseno, S. H., Nugraha, A. W., & Effendi, I. (2024). Penapisan senyawa bioaktif antibakteri fungi laut endofit asal Pulau Buton Sulawesi Tenggara, Jurnal Pengolahan Hasil Perikanan Indonesia, 27(7), 553-563. http://dx.doi.org/10.17844/jphpi.v27i7.50489
Jonathan, Z. K., Mohammad, R. K., Tam, B., & Katherine, A. C. (1998). Characterization of deacetylated chitosan and chitosan molecular weight review. Canadian Journal of Chemistry, 76(11), 1699-1706.
Kalontong, P. K., Safithri, M., & Tarman, K. (2022). Penambatan molekul senyawa aktif Spirulina platensis sebagai Inhibitor TMPRSS2 untuk Mencegah Infeksi SARS-COV-2. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(2), 253-267. https://doi.org/10.17844/jphpi.v25i2.40645
Kulig, D., Król-Kilińska, Ż., Bobak, Ł., Żarowska, B., Jarmoluk, A., & Zimoch-Korzycka, A. (2023). Functional properties of chitosan oligomers obtained by enzymatic hydrolysis. Polymers, 15(18), 1-17. https://doi.org/10.3390/polym15183801
Lauritano, C., & Ianora, A. (2018). Grand challenges in marine biotechnology: Overview of Recent EU-Funded Projects. In P. H. Rampelotto, & A. T. Trincone (Ed.), Grand Challenges in Marine Biotechnology (pp. 425-449).
Muanprasat, C., & Chatsudthipong, V. (2017). Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacology & Therapeutics, 170, 80-97. https://doi.org/10.1016/j.pharmthera.2016.10.013
Pannindriya P., Safithri, M., & Tarman, K. (2021). Analisis in silico senyawa aktif Spirulina platensis sebagai inhibitor tirosinase. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(1), 70-77. https://doi.org/10.17844/jphpi.v24i1.33122
Pari, R. F., Mayangsari, D., Hardiningtyas, S. D. (2022). Depolimerisasi kitosan dari cangkang udang dengan enzim papain dan iradiasi sinar ultraviolet. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(1), 118-131. http://dx.doi.org/ 10.17844/jphpi.v25i1.40311
Pilgaard, B., Wilkens, C., Herbst, F. A., Vuillemin, M., Rhein-Knudsen, N., Meyer, A. S., & Lange, L. (2019). Proteomic enzyme analysis of the marine fungus Paradendryphiella salina reveals alginate lyase as a minimal adaptation strategy for brown algae degradation. Scientific Reports, 9, 1-13. https://doi.org/10.1038/s41598-019-48823-9
Rafael, O. H. D., Fernándo, Z. G. L., Abraham, P. T., Alberto, V. L. P., Guadalupe, G. S., & Pablo, P. J. (2019). Production of chitosan-oligosaccharides by the chitin-hydrolytic system of Trichoderma harzianum and their antimicrobial and anticancer effects. Carbohydrate research, 486, 1-8. https://doi.org/10.1016/j.carres.2019.107836
Revathy, M. R., Mohan, A. S., Kesavan, D., Sarasan, M., & Philip, R. (2024). Endophytic fungi of spurred mangrove, Ceriops tagal and its bioactivity potential: Predominance of Aspergillus species and its ecological significance. The Microbe, 4, 1-8. https://doi.org/10.1016/j.microb.2024.100144
Roncal, T., Oviedo, A., de Armentia, I. L., Fernández, L., & Villarán, M. C. (2007). High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydrate Research, 342(18), 2750-2756. https://doi.org/10.1016/j.carres.2007.08.023
Sandhya, C., Sumantha, A., Szakacs, G., & Pandey, A. (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process biochemistry, 40(8), 2689-2694. https://doi.org/10.1016/j.procbio.2004.12.001
Santoso, J., Adiputra, K. C., Soerdirga, L. C., & Tarman, K. (2019, September 9-10 ). Effect of acetic acid hydrolysis on the characteristics of water soluble chitosan [Conference session]. The World Seafood Congress, Penang, Malaysia. In IOP Conference Series: Earth and Environmental Science. htpps://doi.org/10.1088/1755-1315/414/1/012021
Sarasan, M., Job, N., Puthumana, J., Ravinesh, R., Kachiprath, B., & Philip, R. (2021). Enzyme profiling of macroalgal endophytes: an attempt to uncover the arsenal of novel biocatalysts. Journal Marine Biological Assocciation of India, 62(2), 112–116. https://doi.org/10.6024/jmbai.2020.62.2.2183-14
Schönrogge, K., Gibbs, M., Oliver, A., Cavers, S., Gwen, H. S., Ennos, R. A., Cottrell, J., Iason, G. R., & Taylor, J. (2022). Environmental factors and host genetic variation shape the fungal endophyte communities within needles of Scots pine (Pinus sylvestris). Fungal Ecology, 57, 1-10. https://doi.org/10.1016/j.funeco.2022.101162
Shehata, A. N., & Abd El Aty A. A. (2015). Improved production and partial characterization of chitosanase from a newly isolated Chaetomium globosum KM651986 and its application for chitosan oligosaccharides. Journal of Chemical and Pharmaceutical Research, 7(1), 727-40.
Sibero, M. T., Tarman, K., Radjasa, O. K., Sabono, A., Trianto, A., & Bachtiarini, T. U. (2018). Produksi pigmen dan identifikasi kapang penghasilnya menggunakan pendekatan DNA Barcoding. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 99-108. https://doi.org/10.17844/jphpi.v21i1.21454
Stackebrandt, E., & Goebel, B. M. (1994) A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44, 846–849.
Tarman, K., Sadi, U., Santoso, J., Hardjito, L. (2020). Carrageenan and its enzymatic extraction. Encyclopedia of Marine Biotechnology, 1, 147-159. https://doi.org/10.1002/9781119143802.ch96
Thadathil, N., & Velappan, S. P. (2014). Recent developments in chitosanase research and its biotechnological applications: A review. Food chemistry, 150, 392-399. https://doi.org/10.1016/j.foodchem.2013.10.083
Tian, F., Liu, Y., Hu, K., Zhao, B. (2004). Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohydrate polymers, 57(1), 31-37. https://doi.org/10.1016/j.carbpol.2004.03.016
Vega-Portalatino, E. J., Rosales-Cuentas, M. M., Valdiviezo-Marcelo, J., Arana-Torres, N. M., Espinoza-Espinoza, L. A., Moreno-Quispe, L. A., & Cornelio-Santiago, H. P. (2023). Antimicrobial and production of hydrolytic enzymes potentials of bacteria and fungi associated with macroalgae and their applications: a review. Frontiers in Marine Science, 10, 1-15. https://doi.org/10.3389/fmars.2023.1174569
Venkatachalam, A., Govinda Rajulu, M. B., Thirunavukkarasu, N., & Suryanarayanan, T. S. (2015). Endophytic fungi of marine algae and seagrasses: a novel source of chitin modifying enzymes. Mycosphere, 6, 345–355. htpps://doi.org/10.5943/ MYCOSPHERE/6/3/10
Wardhani, I. K., Badres, S., & Prasetyaningrum. (2013). Kinetika reaksi depolimerisasi karaginan pada suhu dan pH optimum dengan katalisator asam sulfat. Jurnal Teknologi Kimia dan Industri, 2(4), 177– 183.
Xie, Y., Wei, Y., & Hu, J. (2010). Depolymerization of chitosan with a crude cellulase preparation from Aspergillus niger. Applied biochemistry and biotechnology, 160, 1074-1083. https://doi.org/10.1007/s12010-009-8559-2
Yuan, X., Zheng, J., Jiao ,S., Cheng, G., Feng, C., Du, Y., & Liu, H. (2019). A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydrate Polymers, 220 ,60–70. https://doi.org/10.1016/j.carbpol.2019.05.050.
Zhang, J., Mei, Z., Huang, X., Ding, Y., Liang, Y., & Mei, Y. (2020). Inhibition of Maillard reaction in production of low-molecular-weight chitosan by enzymatic hydrolysis. Carbohydrate Polymers, 236, 1-8. htpps://doi.org/10.1016/j.carbpol.2020.116059
Zu, G. R., Chen, M., & Zhang, C. Z. (2012). Screening, identification of a marine fungal strain producing chitosanase. Advanced Materials Research, 581, 1189-1192. https://doi.org/10.4028/www.scientific.net/AMR.581-582.1189
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.