Karakteristik fisik selulosa dari rumput laut Chaetomorpha crassa yang diekstraksi dengan suhu yang berbeda Physical characteristics of cellulose from seaweed Chaetomorpha crassa extracted at different temperatures

Krisman Umbu Henggu, Jasin Umbu Jodi, Oksin Hama Ratu, Sihono Sihono, Yopi Nurdiansyah

Abstract

 


Chaetomorpha crassa is a green seaweed that is abundant in Indonesian waters. The utilization of C. crassa is yet to be fully optimized, as seaweed farmers often view it as a nuisance. However, this seaweed contains natural cellulose, which can be used in industrial applications. Consequently, this study aims to determine the optimal temperature for cellulose extraction from C. crassa, focusing on cellulose content, physical characteristics, and diffraction patterns. The cellulose extraction process involves several stages: depigmentation and delignification at extraction temperatures of 60, 70, and 80°C for 12 h, followed by depolymerization using 5% HCl. The biomass was dried at 60°C for 10 h. The parameters analyzed included the degree of crystallinity, density, flowability index, and porosity, as well as the cellulose, lignin, hemicellulose content, and diffraction patterns. The findings indicated that variations in extraction temperatures of 60°C, 70°C, and 80°C significantly affected (p<0.05) the cellulose, lignin, hemicellulose, bulk density, tap density, Carr's index, Hausner ratio, and porosity. The optimal conditions for cellulose extraction were achieved at a temperature of 70°C, resulting in an average cellulose content of 74.17%, a degree of crystallinity of 64.13%, bulk density of 0.21 g/cm³, tap density of 0.29 g/cm³, Carr's index of 35.11%, Hausner ratio of 2.48, and porosity of 1.27. Diffraction analysis revealed that the cellulose obtained in this study was predominantly type II cellulose (72.66%), with type I cellulose comprising 27.34%.

References

Abdel-Halim, E. S. (2014). Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose. Arabian Journal of Chemistry, 7(3), 362-371. https://doi.org/10.1016/j.arabjc.2013.05.006

Amezcua-Allieri, M. A., Sánchez Durán, T., & Aburto, J. (2017). Study of chemical and enzymatic hydrolysis of cellulosic material to obtain fermentable sugars. Journal of Chemistry, 5(6), 80-105, https://doi.org/10.1155/2017/5680105

Arca, H. C., Mosquera-Giraldo, L. I., Bi, V., Xu, D., Taylor, L. S., & Edgar, K. J. (2018). Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules, 19(7), 2351-2376. https://doi.org/10.1021/acs.biomac.8b00517

Azubuike, C. P., Odulaja, J., & Okhamafe, A. O. (2012). Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells. International Journal of Pharmaceutical Excipients, 3 (3), 106-115. https://doi.org/10.1007/s10570-017-1522-4

Baghel, R. S., Reddy, C. R. K., & Singh, R. P. (2021). Seaweed-based cellulose: Applications, and future perspectives. Carbohydrate Polymers, 267(11), 41-42. https://doi.org/10.1016/j.carbpol.2021.118241

Bhutiya, P. L., Misra, N., Rasheed, M. A., & Hasan, S. Z. (2020). Silver nanoparticles deposited algal nanofibrous cellulose sheet for antibacterial activity. BioNanoScience, 10(9), 23-33. https://doi.org/10.1007/s12668-019-00690-4

Brahma, R., & Ray, S. (2024). Optimization of extraction conditions for cellulose from jackfruit peel using RSM, its characterization and comparative studies to commercial cellulose. Measurement: Food, 13(10), 11-30. https://doi.org/10.1016/j.meafoo.2023.100130

[BSN] Badan Standardisasi Nasional. (1991). Standar Mutu Selulosa Asetat, Nomor: 06-2115-1991

Caprita, F. C., Ene, A., & Cantaragiu Ceoromila, A. (2021). Valorification of Ulva rigida algae in pulp and paper industry for improved paper characteristics and wastewater heavy metal filtration. Sustainability, 13(19), 01-23. https://doi.org/10.3390/su131910763

Chaerunisaa, A. Y., Sriwidodo, S., & Abdassah, M. (2019). Microcrystalline cellulose as pharmaceutical excipient (2nded., pp. 661-837). IntechOpen in Pharmaceutical Formulation Design-Recent Practices

Chen, Y. W., Lee, H. V., Juan, J. C., & Phang, S. M. (2016). Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers, 15(1), 1210-1219. https://doi.org/10.1016/j.carbpol.2016.06.083

Chopra, L. (2022). Extraction of cellulosic fibers from the natural resources: A short review. Materials Today: Proceedings, 48(16), 1265-1270. https://doi.org/10.1016/j.matpr.2021.08.267

Chowdhury, S. G., Chanda, J., Ghosh, S., Pal, A., Ghosh, P., Bhattacharyya, S, Das, A. (2021). Morphology and physico-mechanical threshold of α-cellulose as filler in an E-SBR composite. Molecules, 26(3), 1-17. https://doi.org/10.3390/ molecules26030694

Chundawat, S. P., Donohoe, B. S., da Costa Sousa, L., Elder, T., Agarwal, U. P., Lu, F, & Dale, B. E. (2011). Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy & Environmental Science, 4(3), 973-984. https://doi.org/10.1039/C0EE00574F

Daicho, K., Kobayashi, K., Fujisawa, S., & Saito, T. (2019). Crystallinity-independent yet modification-dependent true density of nanocellulose. Biomacromolecules, 21(2), 939-945. https://doi.org/10.1021/acs.biomac.9b01584

Dao, D. N., Le, P. H., Do, D. X., Dang, T. M., Nguyen, S. K., & Nguyen, V. (2023). Pectin and cellulose extracted from coffee pulps and their potential in formulating biopolymer films. Biomass Conversion and Biorefinery, 13(14), 13117-13125. https://doi.org/10.1007/s13399-022-02339-x

Do, H. T., & Nguyen, H. V. (2018). Effects of spray-drying temperatures and ratios of gum arabic to microcrystalline cellulose on antioxidant and physical properties of mulberry juice powder. Beverages, 4(4), 1-13. https://doi.org/10.3390/beverages4040101

Dubey, R., Toh, Y. R., & Yeh, A. I. (2018). Enhancing cellulose functionalities by size reduction using media-mill. Scientific Reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-29777-w

Franzo, P. (2022, December 01-03). Seaweed Fabrics for Fashion Design. A Field Research Experience [Conference session]. Springer Series in Design and Innovation. https://doi.org/10.1007/978-3-031-49811-4_4

Freile-Pelegrín, Y., Chávez-Quintal, C., Caamal-Fuentes, E., Vázquez-Delfín, E., Madera-Santana, T., & Robledo, D. (2020). Valorization of the filamentous seaweed Chaetomorpha gracilis (Cladophoraceae, Chlorophyta) from an IMTA system. Journal of Applied Phycology, 32(15), 2295-2306. https://doi.org/10.1007/s10811-020-02066-8

Gao, X., Endo, H., & Agatsuma, Y. (2018). Seasonal changes in photosynthesis, growth, nitrogen accumulation, and salinity tolerance of Chaetomorpha crassa (Cladophorales, Chlorophyceae). Journal of Applied Phycology, 30(11), 1905-1912. https://doi.org/10.1007/s10811-017-1381-2

Garcia-Maraver, A., Salvachúa, D., Martínez, M. J., Diaz, L. F., & Zamorano, M. (2013). Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Management, 33(11), 2245-2249. https://doi.org/10.1016/j.wasman.2013.07.010

Gazali, M., Suhardani, M. N., Husni, A., Nurjanah, Nursid, M., Zuriat, Hasanah, U., & Syafitri, R. (2024). Aktivitas inhibisi tirosinase ekstrak etanol rumput laut Ulva lactuca secara in vitro. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(7), 564-585. http://dx.doi.org/10.17844/jphpi.v27i7.53399

Ghazali, M., Mardiana, M., Menip, M., & Bangun, B. (2018). Jenis-jenis makroalga epifit pada budidaya (Kappaphycus alvarezii) di perairan Teluk Gerupuk Lombok Tengah. Jurnal Biologi Tropis, 18(2), 208-215. https://doi.org/10.29303/jbt.v18i2.861

Goyal, A., Sharma, V., Sihag, M. K., Tomar, S. K., Arora, S., Sabikhi, L., & Singh, A. K. (2015). Development and physico-chemical characterization of microencapsulated flaxseed oil powder: A functional ingredient for omega-3 fortification. Powder Technology, 286(78), 527-537. https://doi.org/10.1016/j.powtec.2015.08.050

Hafid, H. S., Omar, F. N., Zhu, J., & Wakisaka, M. (2021). Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydrate polymers, 260(45), 01-17. https://doi.org/10.1016/j.carbpol.2021.117789

He, X., Lu, W., Sun, C., Khalesi, H., Mata, A., Andaleeb, R., & Fang, Y. (2021). Cellulose and cellulose derivatives: Different colloidal states and food-related applications. Carbohydrate Polymers, 255(11), 34-73. https://doi.org/10.1016/j.carbpol.2020.117334

Henggu, K. U., Ibrahim, B., & Suptijah, P. (2019). Hidroksiapatit dari cangkang sotong sebagai sediaan biomaterial perancah tulang. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(1), 1-13. https://doi.org/10.17844/jphpi.v22i1.25869

Jacoeb, A. M., Abdullah, A., & Hakimah, S. N. (2024). Potensi ulvan dari Ulva lactuca sebagai sumber antioksidan. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(3), 242-251. http://dx.doi.org/10.17844/jphpi.v27i3.46950

Jiksing, C., Ongkudon, M. M., Thien, V. Y., Rodrigues, K. F., Yong, W. T. L., Jiksing, C., & Yong, W. T. L. (2022). Recent advances in seaweed seedling production: a review of eucheumatoids and other valuable seaweeds. Algae, 37(2), 105-121. https://doi.org/10.4490/algae.2022.37.5.11

Karimi, K., & Taherzadeh, M. J. (2016). A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresource Technology, 200 (75), 008-1018. https://doi.org/10.1016/j.biortech.2015.11.022

Kasim, M. R., Jamil, M. R., & Irawati, N. (2017). Occurrence of macro-epiphyte on Eucheuma spinosum cultivated on floating cages. AACL Bioflux, 10(3), 12-27. https://doi.org/10.1016/j.molliq.2020.113030

Khoo, C. G., Dasan, Y. K., Lam, M. K., & Lee, K. T. (2019). Algae biorefinery: Review on a broad spectrum of downstream processes and products. Bioresource technology, 292(12), 19-34. https://doi.org/10.1016/j.biortech.2019.121964

Kuthi, F. A. B. A., & Badri, K. H. (2014, September 15-18). Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose [Conference session]. The AIP Conference Proceedings. https://doi.org/10.1063/1.4895240

Lamo, C., Bargale, P. C., Gangil, S., Chakraborty, S., Tripathi, M. K., Kotwaliwale, N., & Modhera, B. (2024). High crystalline cellulose extracted from chickpea husk using alkali treatment. Biomass Conversion and Biorefinery, 14(1), 751-759.

https://doi.org/10.1007/s13399-022-02331-5

Magalhães, S., Fernandes, C., Pedrosa, J. F., Alves, L., Medronho, B., Ferreira, P. J., & Rasteiro, M. D. G. (2023). Eco-friendly methods for extraction and modification of cellulose: An Overview. Polymers, 15(14), 3138. https://doi.org/10.3390/polym15143138

Maradesa, A., Py, B., Quattrocchi, E., & Ciucci, F. (2022). The probabilistic deconvolution of the distribution of relaxation times with finite Gaussian processes. Electrochimica Acta, 413(87), 119-140. https://doi.org/10.1016/j.electacta.2022.140119

Mentari, P. R. A., Andreansyah, I., Amanda, P., Marlina, R., Suharti, S., Agustina, S., & Syamani, F. A. (2023). Cellulose isolation and characterization of green seaweed C. Lentillifera from Halmahera, Indonesia. Jurnal Bahan Alam Terbarukan, 12(2), 112-119. https://doi.org/10.15294/jbat.v12i2.44578

Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2(3), 154-160. https://doi.org/10.4236/wjnse.2012.23020

Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93(06), 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016

Ng, H. M., Sin, L. T., Tee, T. T., Bee, S. T., Hui, D., Low, C. Y., & Rahmat, A. R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75(23), 176-200. https://doi.org/10.1016/j.compositesb.2015.01.008

Nofrerias, I., Nardi, A., Suñé-Pou, M., Suñé-Negre, J. M., García-Montoya, E., Pérez-Lozano, P,Miñarro, M. (2019). Comparison between Microcrystalline Celluloses of different grades made by four manufacturers using the SeDeM diagram expert system as a pharmaceutical characterization tool. Powder Technology, 342(112), 780-788. https://doi.org/10.1016/j.powtec.2018.10.048

Nufus C, Nurjanah, Abdullah A. 2017. Karakteristik rumput laut hijau dari perairan Kepulauan Seribu dan Sekotong Nusa Tenggara Barat sebagai antioksidan. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(3), 620-632. https://doi.org/10.17844/jphpi.v20i3.19819

Nurjanah, Jacoeb, A. M., Ramlan., & Abdullah, A. (2020). Penambahan genjer (Limnocharis flava) pada pembuatan garam rumput laut hijau untuk penderita hipertensi. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3), 459-469. https://doi.org/10.17844/jphpi.v23i3.32462

Nurjanah, Nurilmala, M., Alfarizi, S., Rochima, E., Wahyuni, D. S., & Seulalae, A. V. (2024, June 6). Characterization of seaweed healthy salt from Indonesian Ulva lactuca and Chaetomorpha sp. flour [Conference session]. 6th EMBRIO International Symposium: “Ocean for Prosperity: Sustainably Use of the Ocean Resources for Economic Growth, Improvement of Livelihoods, and Preserve its Ocean Ecosystem Health” (EIS 2023). https://doi.org/10.1051/bioconf/202411209002

Nurjanah., Abdullah, A., & Nufus, C. (2018). Karakteristik sediaan garam Ulva lactuca dari perairan Sekotong Nusa Tenggara Barat bagi pasien hipertensi. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 109-117. https://doi.org/10.17844/jphpi.v21i1.21455

Nurjanah., Suwandi, R., Anwar, E., Maharany, F., & Hidayat, T. (2020, Agustus 05-06). Characterization and formulation of sunscreen from seaweed Padina australis and Eucheuma cottonii slurry [Conference session]. The 4th EMBRIO InternationalSymposium; EIS 2019 and the 7th International Symposium Technologists Association,Bogor, Indonesia. IOP Conference Series: Earthand Environmental Science.https://doi.org/10.1088/1755-1315/404/1/012051.5

Nwachukwu, N., & Ofoefule, S. I. (2020). Effect of drying methods on the powder and compaction properties of microcrystalline cellulose derived from Gossypium herbaceum. Brazilian Journal of Pharmaceutical Sciences, 56(1),60-86. https://doi.org/10.1590/s2175-97902020000118060

Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3(1), 1-10. https://doi.org/10.1186/1754-6834-3-10

Pratiwi, A. R., Fadlilah, I., Ananingsih, V. K., & Meiliana. (2021). Protein dan asam amino pada edible Sargassum aquifolium, Ulva lactuca, dan Gracilariopsis longissima. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(3), 337-346. https://doi.org/10.17844/jphpi.v24i3.37085

Putra, I. D., Arsana, D. P. S., & Merlina Prabayanti, N. P. (2015). Studi Karakteristik Farmasetis Mikrokristalin Selulosa dari Jerami Padi Varietas Lokal Bali. Indonesian Journal of Materials Science, 17(3), 119-123. https://doi.org/10.17146/JSMI.2016.17.3.4192

Ramadhan, W., Uju., Hardiningtyas, S. D., Pari, R. F., Nurhayati, & Sevica, D. (2022). Ekstraksi polisakarida ulvan dari rumput laut Ulva lactuca berbantu gelombang ultrasonik pada suhu rendah. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(1), 132-142. https://doi.org/10.17844/jphpi.v25i1.40407

Rana, R. H., Rana, M. S., Tasnim, S., Haque, M. R., Kabir, S., Amran, M. S., & Chowdhury, A. A. (2022). Characterization and tableting properties of microcrystalline cellulose derived from waste paper via hydrothermal method. Journal of Applied Pharmaceutical Science, 12(6), 140-147. https://doi.org/10.7324/JAPS.2022.120613

Ruel, K., Nishiyama, Y., & Joseleau, J. P. (2012). Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Science, 193(101), 48-61. https://doi.org/10.1016/j.plantsci.2012.05.008

Saker, A., Cares-Pacheco, M. G., Marchal, P., & Falk, V. J. P. T. (2019). Powders flowability assessment in granular compaction: What about the consistency of Hausner ratio?. PowderTechnology, 354(87),52-63. https://doi.org/10.1016/j.powtec.2019.05.032

Salem, D. M., & Ismail, M. M. (2022). Characterization of cellulose and cellulose nanofibers isolated from various seaweed species. The Egyptian Journal of Aquatic Research, 48(4), 307-313. https://doi.org/10.1016/j.ejar.2021.11.001

Salem, K. S., Kasera, N. K., Rahman, M. A., Jameel, H., Habibi, Y., Eichhorn, S. J., Lucia, L. A. (2023). Comparison and assessment of methods for cellulose crystallinity determination. Chemical Society Reviews, 5(2), 6417-6446. https://doi.org/10.1039/D2CS00569G

Santmartí, A., & Lee, K. Y. (2018). Crystallinity and Thermal Stability of Nanocellulose. In Nanocellulose and sustainability (pp. 67-86). CRC Press.Sartika, D., Firmansyah, A.P., (2022). Optimasi suhu dan waktu proses delignifikasi pada Isolasi selulosa dari tongkol jagung. Jurnal Ilmiah Teknologi Pertanian AGROTECHNO, 7(1), 79-88. https://doi.org/10.24843/JITPA.2022.v07.i01.p10

Sayanjali, S., Lu, Y., & Howell, K. (2024). Extraction and Characterization of Cellulose from Broccoli Stems as a New Biopolymer Source for Producing Carboxymethyl Cellulose Films. International Journal of Food Science, 2024(1), 766-793. https://doi.org/10.1155/2024/7661288

Seulalae, A. V., Prangdimurti, E., Adawiyah, D. R., & Nurjanah. (2023). Evaluasi tingkat keasinan relatif dan profil sensori garam rumput laut menggunakan metode magnitude estimation dan rate-all-that-apply (RATA). Jurnal Pengolahan Hasil Perikanan Indonesia, 26(1), 54-66. http://dx.doi.org/10.17844/jphpi.v26i1.44466

Shen, D., Xiao, R., Gu, S., & Zhang, H. (2013). The overview of thermal decomposition of cellulose in lignocellulosic biomass. Cellulose-Biomass Conversion, 12(5), 193-226. https://doi.org/10.5772/51883

Siddhanta, A. K., Chhatbar, M. U., Mehta, G. K., Sanandiya, N. D., Kumar, S., Oza, M. D., & Meena, R. (2011). The cellulose contents of Indian seaweeds. Journal of Applied Phycology, 23(6), 919-923. https://doi.org/10.1007/s10811-010-9599-2

Siddhanta, A. K., Kumar, S., Mehta, G. K., Chhatbar, M. U., Oza, M. D., Sanandiya, N. D., Chejara, D. R., Godiya, C. B., & Kondaveeti, S. (2013). Cellulose contents of some abundant Indian seaweed species. Natural Product Communications, 8(4), 19-34. https://doi.org/10.1177/1934578X1300800423

Sikora, A., Hájková, K., & Jurczyková, T. (2022). Degradation of chemical components of thermally modified Robinia pseudoacacia L. wood and its effect on the change in mechanical properties. International Journal of Molecular Sciences, 23(24), 15-36. https://doi.org/10.3390/ijms232415652

Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W., Kontturi, E. (2023). Understanding nanocellulose–water interactions: Turning a detriment into an asset. Chemical Reviews, 123(5), 1925-2015. https://doi.org/10.1021/acs.chemrev.2c00611

Squinca, P., Bilatto, S., Badino, A. C., & Farinas, C. S. (2022). The use of enzymes to isolate cellulose nanomaterials: A systematic map review. Carbohydrate Polymer Technologies and Applications, 3(1), 1-15. https://doi.org/10.1016/j.carpta.2022.100212

Tasnim, S., Tipu, M. F. K., Rana, M. S., Rahim, M. A., Haque, M., Amran, M. S., Chowdhury, J. A. (2023). Modification of bulk density, flow property and crystallinity of microcrystalline cellulose prepared from waste cotton. Materials, 16(16), 56-64. https://doi.org/10.3390/ma16165664

Tialiou, A., Athab, Z. H., Woodward, R. T., Biegler, V., Keppler, B. K., Halbus, A. F., Chin, J. M. (2023). Fabrication of graded porous structure of hydroxypropyl cellulose hydrogels via temperature-induced phase separation. Carbohydrate Polymers, 315(12), 09-18. https://doi.org/10.1016/j.carbpol.2023.120984

Tsutsui, I., Miyoshi, T., Aue-umneoy, D., Songphatkaew, J., Meeanan, C., Klomkling, S, Hamano, K. (2015). High tolerance of Chaetomorpha sp. to salinity and water temperature enables survival and growth in stagnant waters of central Thailand. International Aquatic Research, 7(2), 47-62. https://doi.org/10.1007/s40071-014-0092-4

Turchiuli, C., Fuchs, M., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2005). Oil encapsulation by spray drying and fluidised bed agglomeration. Innovative Food Science & Emerging Technologies, 6(1), 29-35. https://doi.org/10.1016/j.ifset.2004.11.005

Ullah, H., Santos, H. A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23, 2291-2314. https://doi.org/10.1007/s10570-016-0986-y

Ward, G. M., Faisan Jr, J. P., Cottier‐Cook, E. J., Gachon, C., Hurtado, A. Q., Lim, P. E., Brodie, J. (2020). A review of reported seaweed diseases and pests in aquaculture in Asia. Journal of the World Aquaculture Society, 51(4), 815-828. https://doi.org/10.1111/jwas.12649

Wei, X., Wang, Y., Li, J., Wang, F., Chang, G., Fu, T., & Zhou, W. (2018). Effects of temperature on cellulose hydrogen bonds during dissolution in ionic liquid. Carbohydrate polymers, 201(53), 387-391. https://doi.org/10.1016/j.carbpol.2018.08.031

Wulandari, W. T., Rochliadi, A., & Arcana, I. M. (2016, September 08-09). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. [Conference session]. The 10th Conference on Chemistry, Solo, Indonesia. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/107/1/012045

Xiang, Z., Gao, W., Chen, L., Lan, W., Zhu, J. Y., & Runge, T. (2016). A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose, 23(1), 493-503. https://doi.org/10.1007/s10570-015-0840-7

Authors

Krisman Umbu Henggu
krisman@unkriswina.ac.id (Primary Contact)
Jasin Umbu Jodi
Oksin Hama Ratu
Sihono Sihono
Yopi Nurdiansyah
Henggu K. U., Jodi J. U., Ratu O. H., Sihono S., & Nurdiansyah Y. (2024). Karakteristik fisik selulosa dari rumput laut Chaetomorpha crassa yang diekstraksi dengan suhu yang berbeda: Physical characteristics of cellulose from seaweed Chaetomorpha crassa extracted at different temperatures. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(11), 1074-1090. https://doi.org/10.17844/jphpi.v27i11.58122

Article Details