Kontaminasi Staphylococcus aureus dan Bacillus cereus pada Sushi di Tingkat Ritel di Wilayah Jabodetabek Contamination of Staphylococcus aureus and Bacillus cereus in Sushi at Retail Level in Jabodetabek Area

Yusma Yennie, Ratih Dewanti-Hariyadi, Harsi Dewantari Kusumaningrum, Achmad Poernomo

Abstract

Sushi is a ready-to-eat food from Japan, consisting of accidified rice in combination with raw seafood. Generally, sushi consists of several types, however there are two types of sushi that are very well known, namely nigiri (rice with raw fish on top) and maki (raw fish rolled in rice). The fish, not subjected to any heat treatment, is susceptible to pathogens, i.e., Staphylococcus aureus and Bacillus cereus. These pathogens have been reported as the causes of outbreaks in Indonesia, but the presence of these two pathogens in sushi has not been reported. This study aims to determine the prevalence and level of the two pathogens in sushi at retail in the Greater Jakarta area (Jakarta, Bogor, Depok, Tangerang, and Bekasi). A total of 120 samples consisting of nigiri (n=57) and maki (n=63) were obtained from retailers in the Greater Jakarta area. The identification was carried out by Polymerase Chain Reaction (PCR) method, with the target nuc gene (S. aureus) and gyrB (B. cereus). The contamination level was calculated using the spread plate method for S. aureus and the Most Probable Number (MPN) method for B. cereus. The prevalence of S. aureus (7.5%) in sushi was greater than in B. cereus (5%). The contamination level of S. aureus (8.9x102-1.5x105 CFU/g) was also higher than B. cereus (9.2-9.3 MPN/g). S. aureus was more common in maki (9.5%), while B. cereus was more common in nigiri (7.1%). Sushi made with salmon had a higher prevalence of S. aureus (9.3%) and B. cereus (5.3%) than those made with tuna. Contamination of S. aureus might be caused by a lack of personal hygiene, while B. cereus might result from poor handling of rice and inadequate environmental sanitation. The presence of S. aureus in sushi is more likely to cause the risk of food poisoning than B. cereus. The personal hygienic program in sushi production needs improvement to better assure its safety.

References

Adams, A. M., Leja, L. L., Jinneman, K., Beeh, J., Yuenz, G. A., & Wekelv, M. M. (1994). Anisakid parasites, Staphylococcus aureus and Bacillus cereus in sushi and sashimi from Seattle area restaurants. Journal of Food Protection, 57(4), 311-317.
Ahmad, N., Isworo, A., & Indriani, C. (2018). Kejadian luar biasa keracunan “cumi-cumian” di sekolah dasar negeri 1 Trasan Bandongan Kabupaten Magelang. Media Ilmu Kesehatan, 7(2), 131-136.
Argud'ın, M. A., Mendoza, M. C., & Rodicio, M. R. (2010). Review: Food poisoning and Staphylococcus aureus enterotoxins. Toxins, 2, 1751-1773.
Arisanti, R. R., Indriani, C., & Wilopo, S. A. (2018). Kontribusi agen dan faktor penyebab kejadian luar biasa keracunan pangan di Indonesia: kajian sistematis. Berita Kedokteran Masyarakat, 34(3), 99-106.
Badan Pengawas Obat dan Makanan. (2019). Batas maksimal cemaran mikroba dalam pangan olahan. https://standarpangan.pom.go.id/dokumen/peraturan/2019/PerBPOM_No_13_Tahun_2019_tentang_Batas_Maksimal_Cemaran_Mikrobiologi.pdf.
Badan Pengawas Obat dan Makanan. (2020). Laporan Tahunan Badan Pengawas Obat Dan Makanan 2020. https://www.pom.go.id/new/files/2021/LAPTAH2020/ BPOM/LaporanTahunan 2020 Badan Pengawas Obat dan Makanan.pdf.
Badan Standardisasi Nasional. (2015). SNI 2332.9: 2015 Cara uji mikrobiologi Bagian 9: Penentuan Staphylococcus aureus pada produk perikanan.
Badan Standardisasi Nasional. 2017. SNI ISO 21871:2017. Mikrobiologi bahan pangan dan pakan-Metode horizontal untuk penentuan Bacillus cereus terduga dalam jumlah sedikit-Teknik angka paling mungkin dan metode deteksi.
Balaban, N., & Rasooly, A. (2000). Staphylococcus enterotoxins. International Journal of Food Microbiology, 61(1),1-10.
Batista, C. M., Ribeiro, M. L. R., De Souza, M. J. F., Borges, L. J., Ferreira, C. T. A. P., & Andre, C. P. A. (2017). Microbiological and physicochemical qualities of sushi and sashimi from japanese restaurants in Brazil. Journal of Food and Nutrition Research, 5,729–735.
Brakstad, O. G., Aasbakk, K., & Maeland J. A. (1992). Detection of Staphylococcus aureus by PCR amplification of the nuc gene. Journal of Clinical Microbiology, 30, 1654–1660.
Bennett, S. D., Walsh, K. A., & Gould, L. H. (2013). Foodborne Disease Outbreaks Caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus—United States, 1998–2008. Clinical Infectious Diseases, 57(3), 425–33.
Centers for Disease Control and Prevention. (2012). Multistate outbreak of Salmonella bareilly and Salmonella nchanga infections associated with a raw scraped ground tuna product (final update). http://www.cdc.gov/salmonella/bareilly-04-12/index. html.
Canning, B., Mohamed, I., Wickramasinghe, N., Swindells, J., & O'Shea, M. K. (2020). Thermonuclease test accuracy is preserved in methicillin-resistant Staphylococcus aureus isolates. Journal of Medical Microbiology, 69, 548–551.
Ceuppens, S., Uyttendaele, M., Hamelink, S., Boon, N., & Van de Wiele, T. (2012). Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit. Gut Pathogens, 4(11),1-7.
Depo, M., Dewi, F., & Aryanto, S. (2018). Bacillus cereus contamination of donated food for an orphanage in Gunung Kidul district, Indonesia, 2017. Proceedings of “9th TEPHINET Bi-regional Conference” Lao PDR, 2018.
Dewanti-Hariyadi, R. (2021). Mikrobiologi Keamanan Pangan. PT Penerbit IPB Press.
Doménech-Sánchez, A., Laso, E., José Pérez, M., & Berrocal, C. I. (2011). Emetic disease caused by Bacillus cereus after consumption of tuna fish in a beach club. Foodborne Pathogens and Disease, 8(7), 835-837.
Đorđević, Đ., & Buchtová, H. (2020). Nutritional profile of nigiri sushi meal and the usage of citrate synthase activity as freshness parameter. Iranian Journal of Fisheries Sciences. 19(6):2954-2969.
Fang, T. J., Wei, Q-K., Liao, C-W., Hung, M-J., & Wang, T-H. (2003). Microbiological quality of 18ºC ready-to-eat food products sold in Taiwan. International Journal of Food Microbiology, 80, 241–250.
Feng, C. H. I. (2012). The tale of sushi: History and regulations. Comprehensive Reviews in Food Science and Food Safety, 11, 205–20.
Fitriana, V., Prihastuti, R., Isworo, A., & Riris, A. A. (2018). Kejadian luar biasa keracunan makanan oleh Staphyloccocus aureus di kalasan Sleman Yogyakarta tahun 2017. Proceeding The 3rd Public Health Symposium. Universitas Gadjah Mada.
Food Standards Australia New Zealand. (2016). Compendium of microbiological criteria for food.
Food and Environmental Hygiene Department. (2014). Microbiological guidelines for food: for ready-to-eat food in general and specific food items.
Grutsch, A. A., Nimmer, P. S., Pittsley, R. H., & McKillip, J. L. (2018). Bacillus spp. as pathogens in the dairy industry: Foodborne Diseases. Academic Press, Elsevier Inc.
Haque, M. A., Khan, A., & He, C. (2021). Feed-borne Bacillus cereus: An emerging threat to food chain related hazard, safety and pathogenic potentiality. Veterinary Pathobiology and Public Health, 251-269.
Hennekinne, J-A., De Buyser, M. L., & Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Reviews, 36(4), 815-836.
Houška, M., Kýhos, K., Landfeld, A., Průchová, J., Schlemmerová, L., Šmuhařová, H., Špelina, V., & Novotná, P. (2007). Dry heat inactivation of Bacillus cereus in rice. Czech Journal of Food Sciences, 25(4), 208–213.
Huck, J. R., Hammond, B. H., Murphy, S. C., & Woodcock, N. H., & Boor, K. J. (2007). Tracking spore-forming bacterial contaminants in fluid milk-processing systems. Journal of Dairy Science. 90, 4872–4883.
Hwang J-Y, & Park J-H. (2015). Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-to-eat foods. Journal of Dairy Science, 98, 1652–1660.
Kadariya, J., Smith, T. C., & Thapaliya, D. (2014). Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. BioMed Research International, 2014, 1-9.
Kim, N. H., Yun, A. R., & Rhee, M. S. (2011). Prevalence and classification of toxigenic Staphylococcus aureus isolated from refrigerated ready-to-eat foods (sushi, kimbab and California rolls) in Korea. Journal of Applied Microbiology,111(6), 1456-1464.
Kim, H. W., Hong, Y. J., Jo, J. I., Ha, S. D., Kim, S. H., Lee, H. J., & Rhee, M. S. (2017). Raw ready-to-eat seafood safety: microbiological quality of the various seafood species available in fishery, hyper and online markets. Letters in Applied Microbiology, 64,27—34.
Kim, H., & Chang, H. (2020). Detection of emetic Bacillus cereus from ready-to-eat foods in markets and its production of cereulide under simulated conditions. Journal of the Food Service Safety, 1(1), 9-18.
Kovac, J., Miller, R. A., Carroll, L. M., Kent, D. J., Jian, J., & Beno, S. M. (2016). Production of hemolysin BL by Bacillus cereus group isolates of dairy origin is associated with whole-genome phylogenetic clade. BMC Genomic, 17, 581–596.
Kumari, S., & Sarkar, P. K. (2016). Bacillus cereus hazard and control in industrial dairy processing environment. Food Control, 69, 20–29.
Larsen, H. D., & Jørgensen, K. (1997). The occurrence of Bacillus cereus in Danish pasteurized milk. International Journal of Food Microbiology, 34,179–186.
Liang, W. L., Pan, Y. L., Cheng, H. L., Li, T. C., Yu, P. H. F., & Chan, S. W. (2016). The microbiological quality of take-away raw salmon finger sushi sold in Hong Kong. Food Control, 69, 45–50.
Madison, B. M., & Baselski, V. S. (1983). Rapid identification of Staphylococcus aureus in blood cultures by thermonuclease testing. Journal of Clinical Microbiology, 18, 722-24.
Miguéis, S., Santos, C., Saraiva, C., & Esteves, A. (2015). Evaluation of ready to eat sashimi in northern Portugal restaurants. Food Control, 47, 32–6.
Miller, R. A., Beno, S. M., Kent, D. J., Carroll, L. M., Martin, N. H., & Boor, K. J. (2016). Bacillus wiedmannii sp. nov. is a new psychrotrophic and cytotoxic Bacillus cereus group species isolated from dairy foods and environments in the USA. International Journal of Systematic and Evolutionary Microbiology, 66, 4744–4753.
Miller, R. A., Jian, J., Beno, S. M., Wiedmann, M., & Kovac, J. (2018). Genomic and phenotypic characterization of type strains and dairy-associated isolates in the Bacillus cereus group indicates considerable intra-clade variability in toxin production and cytotoxicity. Applied and Environmental Microbiology, 84, 2479–2517.
Muscolino, D., Giarratana, F., Beninati, C., Tornambene, A., Panebianco, A., & Ziino, G. (2014). Hygienic-sanitary evaluation of susyi and sashimi sold in Messina and Catania, Italy. Italian Journal of Food Safety, 3, 134–136.
NSW Food Authority. (2008). Report on food handling practices and microbiological quality of sushi in Australia.
Nuraisyah, F. (2019). Penyelidikan kejadian luar biasa keracunan makanan di Desa Banjaroyo Kabupaten Kulon Progo. Jurnal Media Kesehatan Masyarakat Indonesia, 15(4), 418-425.
Park, K. M., Kim, H. J., Jeong, M., & Koo, M. (2020). Enterotoxin genes, antibiotic susceptibility, and biofilm formation of low-temperature-tolerant Bacillus cereus isolated from green leaf lettuce in the cold chain. Foods, 9(3),249:1-14.
Puah, S. M., Chua, K. H., & Tan, J. A. M. A. (2016).Virulence factors and antibiotic susceptibility of Staphylococcus aureus isolates in ready-to-eat foods: Detection of Staphylococcus aureus contamination and a high prevalence of virulence genes. International Journal of Environmental Research and Public Health, 13, 1-9.
Puah, S. M., Chua, K. H., & Tan, J. A. M. A. (2017). Prevalence of Staphylococcus aureus and Salmonella enterica in ready-to-eat sushi and sashimi. Tropical Biomedicine, 34, 45–51.
Ramarao, N., Tran, S-L., Marin, M., & Vidic, J. (2020). Advanced methods for detection of Bacillus cereus and its pathogenic factors. Sensors, 20, 1-23.
Sahebnasagh, R., Saderi, H., & Owlia, P. (2013). The prevalence of resistance to methicillin in Staphylococcus aureus strains isolated from patients by PCR method for detection of mecA and nuc genes. Iranian Journal of Public Health, 43(1), 84-92.
Samie, N., Noghabi, K., Gharegozloo, Z., Zahiri, H., Ahmadian, G., & Sharafi, H. (2012). Psychrophilic α-amylase from Aeromonas veronii NS07 isolated from farm soils. Process Biochemistry, 47, 1381–1387.
Sandra, A., Afsah-Hejri, L., Tunung, R., Tuan Zainazor, T. C., Tang, J. Y. H., Ghazali, F. M., Nakaguchi, Y., Nishibuchi, & Son, R. (2012). Bacillus cereus and Bacillus thuringiensis in ready-to-eat cooked rice in Malaysia. International Food Research Journal, 19(3), 829-836.
Schoeni, J. L., & Lee Wong, A. C. (2005). Bacillus cereus food poisoning and its toxins. Journal of Food Protection. 68(3), 636-648.
Suarjana, I. M., & Agung, A. A. G. (2013). Kejadian luar biasa keracunan makanan (studi kasus di SD 3 Sangeh Kabupaten Badung. Jurnal Skala Husada, 10(2), 144-148.
Tallent, S. M., Knolhoff, A., Rhodehamel, J. R., Harmon, S. M., & Bennett, R. W. (2019). BAM Chapter 14: Bacillus cereus. US Food and Drugs Administration. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-14-Bacillus-cereus.
Tiengtip, R. (2020). Anisakis spp. parasites and Staphylococcus aureus, Bacillus cereus in sushi and sashimi from Thammasat University (Rangsit Campus) area restaurants. Thammasat Medical Journal, 20(4), 307-316.
Tirloni, E., Bernardi, C., Gandolfi, G., Cattaneo, P., & Stella, S. (2017). What happens to the microflora of retail sushi in the warm season? Journal of Food and Nutrition Research, 5(2), 95–100.
Todar, K. (2009). Bacillus and related endospore-forming bacteria. http://www.textbookofbacteriology.net/ Bacillus.html. Diakses: 6 Nopember 2009.
Umedaa, K., Nakamuraa, H., Yamamotoa, K., Nishinab, N., Yasufukub, K., Hiraia, Y., Hirayamaa, T., Gotoa, K., Hasea, A., & Ogasawaraa, J. (2017). Molecular and epidemiological characterization of staphylococcal foodborne outbreak of Staphylococcus aureus harboring seg, sei, sem, sen, seo, and selu genes without production of classical enterotoxins. International Journal of Food Microbiology, 256, 30–35.
Vaiyapuri, M., Joseph, T. C., Rao, B. M., Lalitha, K. V., & Prasad, M. M. (2019). Methicillin-resistant Staphylococcus aureus in seafood: Prevalence, laboratory detection, clonal nature, and control in seafood chain. Journal of Food Science, 84(12), 3341-3351.
Yalçın, H., & Çakmak, T. (2020). Evaluation of microbiological quality in fresh sushi samples. Veterinary Journal of Mehmet Akif Ersoy University, 5(1), 1-5.
Yamada, S., Ohashi, E., Agata, N., & Venkateswaran, K. (1999). Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of Bacillus cereus in rice. Applied and Environmental Microbiology, 65, 1483–1490.
Yap, M., Chau, M. L., Hartantyo, S. H. P., Oh, J. Q., Aung, K. T., Gutiérrez, R. A., & Ng, L. C. (2019). Microbial quality and safety of sushi prepared with gloved or bare hands: Food handlers’ impact on retail food hygiene and safety. Journal of Food Protection, 82, 615–622.
Yu, S., Yu, P., Wang, J., Li, C., Guo, H., Liu, C., Kong, L., Yu, L., Wu, S., Lei, T., Chen, M., Zeng, H., Pang, R., Zhang, Y., Wei, X., Zhang, J., Wu, Q., & Ding, Yu. (2020). A Study on prevalence and characterization of Bacillus cereus in ready-to-eat foods in China. Frontiers in Microbiology, 10, 1-11.

Authors

Yusma Yennie
Ratih Dewanti-Hariyadi
ratihde@apps.ipb.ac.id (Primary Contact)
Harsi Dewantari Kusumaningrum
Achmad Poernomo
YennieY., Dewanti-HariyadiR., KusumaningrumH. D., & PoernomoA. (2022). Kontaminasi Staphylococcus aureus dan Bacillus cereus pada Sushi di Tingkat Ritel di Wilayah Jabodetabek: Contamination of Staphylococcus aureus and Bacillus cereus in Sushi at Retail Level in Jabodetabek Area . Jurnal Pengolahan Hasil Perikanan Indonesia, 25(2), 331-344. https://doi.org/10.17844/jphpi.v25i2.42066

Article Details