Aplikasi Response Surface Methodology (RSM) dengan Historical Data pada Optimasi Proses Produksi Burger

  • Mawi Prabudi Program Studi Magister Profesional Teknologi Pangan, Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor
  • Budi Nurtama Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor
  • Eko Hari Purnomo Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor
Keywords: burger, historical data, optimization, RSM

Abstract

Customer satisfaction is a key for an industry because with high grade level satisfaction then expected customer will be loyal to the product and can be loyal customer. Good product quality is a manufacturer that is very concerned about the quality of the product. The enhancement of burger production can be seen from 2014 to 2015, that is 7.12%, then increased by 22.79% in 2016 than 2014. Burger production processes include incoming material, weighing, grinding, raw material mixing, input mixing material to the casing (filler), cooking, cooling, cutting by size, packaging, checking using metal detector, freezing, cold storage, and distribution. On this research used historical data, where the data used is data taken through direct observation with record all data and parameters measured. The data used is as much as 50 data with using 3 factors : speed, diameter and temperature. While the desired response is thickness of product (thick) of 4mm, weight of product (weight) of 14g, bubble (on scale 1-3) maximum on scale 2 and defect (disability product) maximum 5%. The optimum burger production obtained by using Design Expert-7 (DX-7) is at condition 243 rpm speed, 7 cm product diameter, and 11.6 C temperature. This can be proved by the verification result indicating that the thick value of 3.825 mm; weight 14.105 g; bubble on a scale of 2 and the defect is in the range of 4.41%, which means that the overall verification results are in the range of 95% CI low and 95% CI high. This shows that the modeling results of software used can be applied to the daily production of burger products in order to obtain optimal results.

Downloads

Download data is not yet available.

References

Anis M, Nandiroh S, Utami AD. 2007. Optimasi peren-canaan produksi dengan metode goal prog-ramming. J Ilmiah Teknik Industri 5(3): 133 – 143.

Bas D, Boyaci IH. 2007. Modelling and optimization I: usability of response surface methodology. J Food Eng 78: 836–845.

Cahya DSD. 2016. Penerapan Kombinasi Produk Dengan Menggunakan Linear Programming Untuk Memak-simalkan Keuntungan Pada Ciwawa Cake And Bakery. Universitas Pasundan. Bandung.

Iriawan N, Astuti SP. 2006. Mengolah Data Statistik dengan Mudah Menggunakan Minitab 14. Yogya-karta. Penerbit ANDI.

[Kemenperin] Kementerian Perindustrian Republik Indonesia. 2017. Tertinggi, Kontribusi Industri Ma-kanan dan Minuman Capai 34,17 Persen. http:// www.kemenperin.go.id/artikel/17984/Tertinggi,-Kontribusi-Industri-Makanan-dan-Minuman-Capai-34,17-Persen. (12 Maret 2018).

[KEMENPERIN] Kementerian Perindustrian Republik Indonesia. 2018. Sektor-Sektor Manufaktur Andalan Tahun 2018. http://www.kemenperin.go.id/ artikel/ 18609/Sektor-Sektor-Manufaktur-Andalan-Tahun-2018. (12 Maret 2018).

Liu Y, Jianga C, Zhao H. 2018. Using contextual features and multi-view ensemble learning in product defect identification from online discussion forums. Decision Support Systems. Volume 105, January 2018, Pages 1-12. DOI: 10. 1016/j.dss.2017.10.009.

Montgomery DC. 2001. Design and Analysis of Expe-rimental. John Wiley dan Sons Inc, New York.

Montgomery DC. 2013. Design and Analysis of Expe-riments. 8th edition. Wiley, New York. ISBN 978-1-118-14692-7.

Mueanmas C, Nikhom R, Kaew-On J, Prasertsit K. 2017. Statistical optimization for esterification of waste coffee grounds oil using response surface method-logy. ELSEVIER. Energy Procedia 138(2017): 235–240.

Raissi S and Farzani RE. 2009. Statistical process opti-mization through multiresponse surface methodo-logy. World Academy of Science, Engineering and Technology. pp. 267–271.

Radojkovic M, Zekovic Z, Jokic S and Vidovic S. 2012. Determination of optimal extraction parameters of mulberry leaves using Response Surface Methodo-logy (RSM). Romanian Biotechnological Letters. 17(3): 7295–7308.

Rahardjo J dan Iman R. 2002. Optimasi produksi dengan menggunakan metode response surface. J Teknik Industri 4(1): 36-44.

Yolmeh M and Jafari SM. 2017. Applications of Res-ponse Surface Methodology In The Food Industry Processes. Springer Science+Business Media New York.

Published
2018-10-31
How to Cite
PrabudiM., NurtamaB., & PurnomoE. H. (2018). Aplikasi Response Surface Methodology (RSM) dengan Historical Data pada Optimasi Proses Produksi Burger. Jurnal Mutu Pangan : Indonesian Journal of Food Quality, 5(2), 109-115. Retrieved from https://journal.ipb.ac.id/index.php/jmpi/article/view/26230
Section
Research Paper