Fertilization Effects on Early Growth, Aboveground Biomass, Carbon Storage, and Leaf Characteristics of Eucalyptus pellita F. Muell. in South Sumatera
Abstract
Fertilization is one of the nutrient management efforts that play an important role in improving the productivity of plantation forests. It was conducted to provide adequate nutrients for the plant at the initial growth period when the availability of soil nutrients is very limited. The optimum dose of fertilization for each plant is different depending on its requirement, climate, and soil properties. This study investigated the influence of fertilization on early growth, aboveground biomass, carbon storage, and leaf characteristics in Eucalyptus pellita in the sixth months after field establishment. An experiment comprising four treatments of fertilization, i.e., 0, 75, 133, and 167 kg ha -1 of triple superphosphate 46% P2O5 was set up using randomized complete block design with five replications. Four indicators were selected to evaluate the early growth of E. pellita, namely survival rate, height, the collar of diameter, and crown projection area. Aboveground biomass and carbon storage of E. pellita were estimated in each component, covering stem, bark, branches, and leaves. The leaf characteristics of E. pellita were described by individual leaf area, individual leaf dry weight, specific leaf area, and leaf area index. Results showed that the different treatment of fertilization did not have a meaningful effect on survival rate, individual leaf area, and specific leaf area. The treatments presented a substantial effect on other indicators such as height, diameter, crown projection area, aboveground biomass, carbon storage, individual leaf dry weight, and leaf area index. Despite the fact that the highest mean of height and collar of diameter were observed in the dose of 167 kg ha -1, the greatest average of aboveground biomass and carbon storage were noted in the rate of 133 kg ha -1. Nevertheless, this study did not find a highly different performance of E. pellita between both treatments statistically.
References
Amezquita, P. S. M., Rubiano, J. A. M., Filho, N. F. D. B., & Cipriani, H. N. (2018). Fertilization effects on Eucalyptus pellita F. Muell productivity in the Colombian Orinoco Region. Revista Arvore, 42(5), 1–8. https://doi.org/10.1590/1806-9088201800050002
Bassaco, M. V. M., Motta, A. C. V., Pauletti, V., Prior, S. A., Nisgoski, S., & Ferreira, C. F. (2018). Nitrogen, phosphorus, and potassium requirements for Eucalyptus urograndis plantations in southern Brazil. New Forests, 49(5), 681–697. https://doi.org/10.1007/s11056-018-9658-0
Battie-laclau, P., Delgado-rojas, J. S., Christina, M., Nouvellon, Y., Bouillet, J., Cassia, M. De, … Laclau, J. (2016). Potassium fertilization increases water-use efficiency for stem biomass production without affecting intrinsic water-use efficiency in Eucalyptus grandis plantations. Forest Ecology and Management, 364, 77–89. https://doi.org/10.1016/j.foreco.2016.01.004
Booth, T. H. (2013). Eucalypt plantations and climate change. Forest Ecology and Management, 301, 28–34. https://doi.org/10.1016/j.foreco.2012.04.004
Crous, K. Y., Ósvaldsson, A., & Ellsworth, D. S. (2015). Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant and Soil, 391(1–2), 293–305. https://doi.org/10.1007/s11104-015-2426-4
Dell, B., Hardy, G., & Burgess, T. (2008). Health and nutrition of plantation eucalypts in Asia. Southern Forests, 70(2), 131–138. https://doi.org/10.2989/SOUTH.FOR.2008.70.2.8.536
Dwyer, J. M., Hobbs, R. J., Mayfield, M. M., Dwyer, J. M., Hobbs, R. J., & Mayfield, M. M. (2019). Specific leaf area responses to environmental gradients through space and time Published by: Wiley on behalf of the Ecological Society of America Stable URL : https://www.jstor.org/stable/43494353 Specific leaf area responses to environmental gradients t. 95(2), 399–410.
Ferreira, J. M. A, & Stape, J. L. (2009). Productivity gains by fertilisation in Eucalyptus urophylla clonal plantations across gradients in site and stand conditions. Southern Forests, 71(4), 253–258. https://doi.org/10.2989/SF.2009.71.4.1.1028
Fujita, M. S., Prawiradilaga, D. M., & Yoshimura, T. (2014). Roles of fragmented and logged forests for bird communities in industrial Acacia mangium plantations in Indonesia. Ecological Research, 29(4), 741–755. https://doi.org/10.1007/s11284-014-1166-x
Gonçalves, J. L. M., Wichert, M. C. P., Gava, J. L., Masetto, A. V, Junior, A. J. C., Serrano, M. I. P., & Mello, S. L. M. (2010). Soil fertility and growth of Eucalyptus grandis in Brazil under different residue management practices. Southern Forests : A Journal of Forest Science, 69(2), 95–102. https://doi.org/10.2989/SHFJ.2007.69.2.4.289
Graciano, C., Goya, J. F., Frangi, J. L., & Guiamet, J. J. (2006). Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis. Forest Ecology and Management, 236, 202–210. https://doi.org/10.1016/j.foreco.2006.09.005
Hakamada, R., Giunti Neto, C., de Lemos, C. C. Z., Silva, S. R., Otto, M. S. G., Hall, K. B., & Stape, J. L. (2016). Validation of an efficient visual method for estimating leaf area index in clonal Eucalyptus plantations. Southern Forests, 78(4), 275–281. https://doi.org/10.2989/20702620.2016.1201641
Halomoan, S. S. T., Wawan, & Adiwirman. (2015). Effect of fertilization on the growth and biomass of Acacia mangium and Eucalyptus hybrid ( E . grandis x E . pellita ). Journal of Tropical Soils, 20(3), 157–166. https://doi.org/10.5400/jts.2015.20.3.157
Hardie, M., Mendham, D., Corkrey, R., Hardiyanto, E., Maydra, A., Siregar, S., … Wibowo, A. (2017). Effects of Eucalypt and Acacia plantations on soil water in Sumatra Effects of Eucalypt and Acacia plantations on soil water. New Forests, (September). https://doi.org/10.1007/s11056-017-9607-3
Harwood, C. E., Alloysius, D., Pomroy, P., Robson, K. W., & Haines, M. W. (1997). Early growth and survival of Eucalyptus pellita provenances in a range of tropical environments , compared with E. grandis , E. urophylla and Acacia mangium. New Forests, 14, 203–219.
Harwood, C. E., & Nambiar, E. K. S. (2014). Productivity of acacia and eucalypt plantations in South- east Asia . 2. trends and variations. International Forestry Review, 16(2), 249–260.
Hii, S. Y., Ha, K. S., Ngui, M. L., Ak Penguang, S., Duju, A., Teng, X. Y., & Meder, R. (2017). Assessment of plantation-grown Eucalyptus pellita in Borneo, Malaysia for solid wood utilisation. Australian Forestry, 80(1), 26–33. https://doi.org/10.1080/00049158.2016.1272526
Inail, M. A., Thaher, E., & Monica, S. (2015). Respsonse of early growth Eucalyptus pellita to phosphorus fertilizer (Vol. 1). Muara Enim.
Johnson, M. P. (2016). An overview of photosynthesis. Photosynthesis, 1, 255–273. https://doi.org/10.1042/EBC20160016
Jun, D., Hong, L. E. I. X., & Shi, L. R. J. (2019). Estimating Single Leaf Area of Eucalyptus ( Eucalyptus grandis x Eucalyptus urophylla ) Using Leaf Length and Width Single leaf area estimation models based on leaf weight of eucalyptus in southern China. (201004002). https://doi.org/10.1109/PMA.2009.66
Latifah, S., & Sulistiyono, N. (2013). Carbon Sequestration Potential in Aboveground Biomass of Hybrid Eucalyptus Plantation Forest. Journal of Tropical Forest Management, 19(1), 54–62. https://doi.org/10.7226/jtfm.19.1.54
Li, G., Zhang, Z., Shi, L., Zhou, Y., Yang, M., & Cao, J. (2018). Effects of Different Grazing Intensities on Soil C , N , and P in an Alpine Meadow on the Qinghai — Tibetan. International Journal of Environmental Research and Public Health, 15, 1–16. https://doi.org/10.3390/ijerph15112584
Lumbres, R. I. C., Lee, Y. J., Yun, C. W., Koo, C. D., Kim, S. Bin, Son, Y. M., … Seo, Y. O. (2015). DBH-height modeling and validation for Acacia mangium and Eucalyptus pellita in Korintiga Hutani Plantation , Kalimantan , Indonesia. Forest Science and Technology, 11(3), 119–125. https://doi.org/10.1080/21580103.2014.957356
Mcewan, A., Marchi, E., Spinelli, R., & Brink, M. (2019). Past , present and future of industrial plantation forestry and implication on future timber harvesting technology. Journal of Forestry Research. https://doi.org/10.1007/s11676-019-01019-3
Melo, E. A. S. C., Goncalves, J. L. M., Rocha, J. H. T., Hakamada, R. E., Bazani, J. H., Wenzel, A. V. A., … Ferraz, A. V. (2016). Responses of clonal eucalypt plantations to N , P and K fertilizer application in different edaphoclimatic conditions. Forests, 7(2), 1–15. https://doi.org/10.3390/f7010002
Mori, T., Ishizuka, S., Konda, R., Genroku, T., Nakamura, R., Kajino, H., … Ohta, S. (2018). Potassium and magnesium in leaf and top soil affected by triple superphosphate fertilisation in an Acacia mangium plantation. Journal of Tropical Forest Science, 30(1), 1–8. https://doi.org/10.26525/jtfs2018.30.1.18
Nambiar Ao, E. K. S. (2015). Forestry for rural development, poverty reduction and climate change mitigation: We can help more with wood. Australian Forestry, 78(2), 55–64. https://doi.org/10.1080/00049158.2015.1050776
Nambiar, E. K. S., & Harwood, C. E. (2014). Productivity of acacia and eucalypt plantations in Southeast Asia. 1. Bio-physical determinants of production: opportunities and challenges. International Forestry Review, 16(2), 225–248. https://doi.org/10.1505/146554814811724757
Nurudin, M., Ohta, S., Hardiyanto, E. B., Mendham, D., & Wicaksono, A. (2013). Relationships between soil characteristics and productivity of Acacia mangium in South Sumatra. Tropics, 22(1), 1–12.
Payn, T., Carnus, J. M., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S., … Wingfield, M. J. (2015). Changes in planted forests and future global implications. Forest Ecology and Management, 352, 57–67. https://doi.org/10.1016/j.foreco.2015.06.021
Pirralho, M., Flores, D., Sousa, V. B., Quilhó, T., Knapic, S., & Pereira, H. (2014). Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Industrial Crops and Products, 54, 327–334. https://doi.org/10.1016/j.indcrop.2014.01.040
Pretzsch, H., Biber, P., Uhl, E., Dahlhausen, J., Rötzer, T., Caldentey, J., … Pauleit, S. (2015). Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry and Urban Greening, 14(3), 466–479. https://doi.org/10.1016/j.ufug.2015.04.006
Sasaki, N., Asner, G. P., Pan, Y., Knorr, W., Durst, P. B., Ma, H. O., … Putz, F. E. (2016). Sustainable management of tropical forests can reduce carbon emissions and stabilize timber production. Frontiers in Environmental Science, 4, 1–13. https://doi.org/10.3389/fenvs.2016.00050
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., … Zhang, F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156(3), 997–1005. https://doi.org/10.1104/pp.111.175232
Silva, P. H. M., Poggiani, F., Libardi, P. L., & Goncalves, A. N. (2013). Fertilizer management of eucalypt plantations on sandy soil in Brazil : Initial growth and nutrient cycling. Forest Ecology and Management, 301, 67–78. https://doi.org/10.1016/j.foreco.2012.10.033
Silva, R. M. L., Hakamada, R. E., Bazani, J. H., Otto, M. S. G., & Stape, J. L. (2016). Fertilization response, light use, and growth efficiency in Eucalyptus plantations across soil and climate gradients in Brazil. Forests, 7(6), 2–13. https://doi.org/10.3390/f7060117
Simetti, R., Bonduelle, G. M., Silva, D. A. da, Mayer, S. L. S., Souza, H. P., & Muniz, G. I. B. de. (2018). Production of biomass and energy stock for five Eucalyptus species. Revista Ciência Da Madeira - RCM, 9(1), 30–36. https://doi.org/10.12953/2177-6830/rcm.v9n1p30-36
Singh, G., Goyne, K. W., & Kabrick, J. M. (2015). Determinants of total and available phosphorus in forested Alfisols and Ultisols of the Ozark Highlands, USA. Geoderma Regional, 5, 117–126. https://doi.org/10.1016/j.geodrs.2015.05.001
Smethurst, P., Baillie, C., Cherry, M., & Holz, G. (2003). Fertilizer effects on LAI and growth of four Eucalyptus nitens plantations. Forest Ecology and Management, 176, 531–542.
Taugourdeau, S., Avelino, J., Jones, J. R., Ramirez, L. G., Jara, M., Charbonnier, F., … Roupsard, O. (2014). Agriculture , Ecosystems and Environment Leaf area index as an indicator of ecosystem services and management practices : An application for coffee agroforestry. “Agriculture, Ecosystems and Environment,” 192, 19–37. https://doi.org/10.1016/j.agee.2014.03.042
Tng, D. Y. P., Janos, D. P., Jordan, G. J., Weber, E., & Bowman, D. M. J. S. (2014). Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil. Frontiers in Plant Science, 5, 1–11. https://doi.org/10.3389/fpls.2014.00527
Toit, B., & Dovey, S. B. (2005). Effect of site management on leaf area, early biomass development, and stand growth efficiency of a Eucalyptus grandis plantation in South Africa . Canadian Journal of Forest Research, 35(4), 891–900. https://doi.org/10.1139/x04-205
Van Bich, N., Mendham, D., Evans, K. J., Dong, T. L., Hai, V. D., Van Thanh, H., & Mohammed, C. L. (2019). Effect of residue management and fertiliser application on the productivity of a Eucalyptus hybrid and Acacia mangium planted on sloping terrain in northern Vietnam. Southern Forests, 81(3), 201–212. https://doi.org/10.2989/20702620.2018.1555940
Viera, M., Fernández, F. R., & Rodríguez-Soalleiro, R. (2016). Nutritional prescriptions for Eucalyptus plantations: Lessons learned from Spain. Forests, 7(4), 1–15. https://doi.org/10.3390/f7040084
Viera, M., & Rodríguez-Soalleiro, R. (2019). A Complete Assessment of Carbon Stocks in Above and Belowground Biomass Components of a Hybrid Eucalyptus Plantation in Southern Brazil. Forests, 10(7), 536. https://doi.org/10.3390/f10070536
Zeng, S., Jacobs, D. F., Sloan, J. L., Xue, L., Li, Y., & Chu, S. (2013). Split fertilizer application affects growth, biomass allocation, and fertilizer uptake efficiency of hybrid Eucalyptus. New Forests, 44(5), 703–718. https://doi.org/10.1007/s11056-013-9371-y
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Manajemen Hutan Tropika is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.