Abstrak
Penelitian ini dilakukan untuk mengembangkan robot otonom yang dikendalikan dengan pendekatan matematika inverse kinematics. Robot yang digunakan pada penelitian ini adalah robot beroda nonholonomic differential drive. Metode penelitian yang digunakan terdiri atas empat tahapan, yaitu: penentuan parameter robot beroda, pengembangan kontrol inverse kinematics, pembuatan data lintasan (trajectory) berupa garis lurus, dan pengujian sistem kendali. Pada pengujian, data trajectory yang dibangkitkan dibandingkan dengan pengukuran berdasarkan observasi di lapangan. Pengukuran data gerakan robot di lapangan dilakukan dengan dua alat, yaitu dengan global positioning system (GPS) yang terpasang pada robot dan GPS smartphone. Hasil pengujian menunjukkan bahwa robot beroda dapat dikendalikan dengan inverse kinematics dengan rata-rata nilai galat sebesar 0.9 meter.
Kata Kunci: inverse kinematics, kendali, otonom, robot beroda.
Referensi
Ahmad Omar, Ullah Irfan, Iqbal Jamshed. 2014. A multi-robot educational and research network. International Journal of Academic Research. 6(2):217-222.doi:10.7813/2075-4124.2014/6-2/ A.32
Almurib HAF, Isa AAM, Al-Assadi HMAA. 2011. Direct neural network control via inverse modelling: Application on induction motors. Artificial Neural Networks - Industrial and Control Engineering Applications. doi:10.5772/16052.
Gu J, Ma X, Liu F, Wang Y, Ren H. 2017. Mathematical modeling and intelligent algorithm for multi-robot path planning. Mathematical Problems in Engineering. doi:10.1155/2017/ 1465158.
Hofmann-Wellenhof B, Lichtenegger H, Collins J. 2001. Global positioning system: theory and practice. Ed ke-5. New York (US): Springer-Verlag Wien.
Holmberg R, Khatib O. 2000. Development and control of a holonomic mobile robot for mobile manipulation tasks. International Journal of Robotics Research. 19(11):1066-1074.
Jatmiko W, Mursanto P, Tawakal MI, Alvissalim MS, Hafidh A, Budianto E, Kurniawan MN, Ahfa K, Danniswara K, Ma'sum MA, et al. 2012. Robotika: Teori dan Aplikasi. Depok (ID): Universitas Indonesia.
Kusumoputro B, Suprijono H, Heryanto MA, Suprapto BY. 2016. Development of an attitude control system of a heavy-lift hexacopter using Elman recurrent neural networks. 2016 22nd International Conference on Automation and Computing (ICAC). Colchester (UK): IEEE.
Laumond JP, Sekhavat S, Lamiraux F. 1998. Guidelines in nonholonomic motion planning for mobile robots. Di dalam: Robot Motion Planning and Control, Laumond JP, editor. Volume ke-229. Lecture Notes in Control and Information Sciences. London (GB): Springer-Verlag Berlin Heidelberg. hlm 1-53.
Lindsay Andy. 2016. Robotics with the BOE Shield-bot for Arduino. Versi ke-1.1. California (US): Parallax Inc.
Liu Y, Nejat G. 2013. Robotic urban search and rescue: A survei from the control perspective. Journal of Intelligent and Robotic Systems. 72(2):147-165.doi:10.1007/s10846-013-9822-x.
Naveed K, Khan ZH. 2017. Adaptive path tracking control design for a wheeled mobile robot. 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE). Beijing (CN): IEEE.
Paul RP. 1981. Robot manipulators: mathematics, programming, and control : the computer control of robot manipulators. Cambridge (US): MIT Press.
Priandana K. 2017. Sistem kendali kapal-pengejar-nirawak berbasis neural networks menggunakan ensemble kalman filter sebagai prediktor informasi radar [disertasi]. Depok (ID): Universitas Indonesia.
Priandana K, Buono A, Wulandari. 2017. Hexapod leg coordination using simple geometrical tripod-gait and inverse kinematics approach. 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS). Bali (ID): IEEE.
Siegwart R, Nourbakhsh IR. 2004. Introduction to autonomous mobile robots. London (GB). MIT Press.
Siegwart R, Chli M, Rufli M. 2017. Autonomous Mobile Robot. Switzerland (CH): ETH Zurich.
Thao NGM, Nghia DH, Phuc NH. 2010. A PID back-stepping controller for two-wheeled self-balancing robot. International Forum on Strategic Technology 2010. Ulsan (KR): IEEE.