Potensi Senyawa Volatil dari Khamir untuk Mengendalikan Cercospora coffeicola

Potency of Yeast’s Volatile Compounds to Control Cercospora coffeicola

  • Sri Hartati Department of Plant Pests and Diseases, Faculty of Agriculture at Padjadjaran University
  • Rika Meliansyah Department of Plant Pests and Diseases, Faculty of Agriculture at Padjadjaran University
  • Tri Mayanti Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjadjaran
Keywords: antagonistic agents, antifungal, colony color, colony shape, double dish system


Potency of Yeast’s Volatile Compounds to Control Cercospora coffeicola

Cercospora leaf spot caused by Cercospora coffeicola is a major disease on coffee plants. Antifungal volatiles produced by some antagonistic agents can be useful in biological control approach of this pathogen. Some yeasts have been reported to produce antifungal volatiles and may have the potency as antagonistic agents against fungal pathogens. This research was aimed to determine the morphological characteristics of the yeast isolates and their ability to suppress C. coffeicola by producing antifungal volatiles. The yeasts were isolated from coffee leaves and berries grown in several location at Kecamatan Cilengkrang, Kabupaten Bandung and Kecamatan Jatinangor, Kabupaten Sumedang. The research was started by isolation of yeasts and followed by morphological characterization of yeasts’ colony. The potency of the volatiles produced by the antagonistic isolates were tested in vitro using double dish system. As many as 52 yeast isolates were obtained. The dominant colors of the yeasts colonies on PDA were white, cream, and orange, with smooth, serrated, and filamentous edges. The colony shapes were round to irregular. The microscopic observation showed that the cells were round, ovate, and elongated, with the size ranged around 2.59-18.13 × 1.23-7.77 µm. Those yeasts isolates were able to suppress the growth of C. coffeicola by the activity of antifungal volatile compound, with the inhibition level of 11.85% to 79.26%. The results showed that all the isolates were capable to inhibit the in vitro growth of C. coffeicola.


Download data is not yet available.


Alamsyah D, Pasaribu LS, Alfiansyah MJ. 2022. Influence disease spots leaves on coffee plants and their control. Journal of Agriculture. 1(01):9–13. DOI: https://doi.org/10.47709/joa.v1i01.1435.

Alkuwari A, Hassan ZU, Zeidan R, Al-Thani R, Jaoua S. 2022. Occurrence of mycotoxins and toxigenic fungi in cereals and application of yeast volatiles for their biological control. Toxins. 14(6):1–13. DOI: https://doi.org/10.3390/toxins14060404.

Al-Shaheen MR, Farhan MA. 2018. The possibility of cytokinins production from regular dry bakery yeast (Saccharomyces cerevisiae). Journal of Advanced Research in Applied Chemistry and Chemical Engineering. 3(4):1–4.

Andrade CCL, Resende MLV, Moreira SI, Mathioni SM, Botelho DMS, Costa JR, Andrade ACM, Alves E. 2021. Infection process and defense response of two distinct symptoms of Cercospora leaf spot in coffee leaves. Phytoparasitica. 49(4):727–737. DOI: https://doi.org/10.1007/s12600-021-00902-2.

Aron O, Wang M, Lin L, Batool W, Lin B, Shabbir A, Wang Z, Tang W. 2021. Mogln2 is important for vegetative growth, conidiogenesis, maintenance of cell wall integrity and pathogenesis of Magnaporthe oryzae. Journal of Fungi. 7(6):1–24. DOI: https://doi.org/10.3390/jof7060463.

Assis SMP, Mariano RLR, Michereff SJ, Silva G, Maranhao EAA. 1999. Antagonism of yeasts to Xanthomonas campestris pv. campestris on cabbage phylloplane in field. Revista de Microbiologia. 30(3):191–195. DOI: https://doi.org/10.1590/S0001-37141999000300002.

Ayilara MS, Adeleke BS, Akinola SA, Fayose CA, Adeyemi UT, Gbadegesin LA, Omole RK, Johnson RM, Uthman QO, Babalola OO. 2023. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Frontiers in Microbiology. 14(1):1–16. DOI: https://doi.org/10.3389/fmicb.2023.1040901.

Barnett HL, Hunter BB. 1987. Illustrated Genera of Imperfect Fungi. New York (NY): Macmillan Publishing Company.

Bhandari S, Nepal S, Banstola R, Thapaliya B, Poudel A. 2022. Ecofriendly management of cercospora leaf spot, Cercospora coffeicola (berk & m.a. curtis) disease of coffee in gulmi. Russian Journal of Agricultural and Socio-Economic Sciences. 7(127):111–123.

Boekhout T, Amend AS, El Baidouri F, Gabaldón T, Geml J, Mittelbach M, Robert V, Tan CS, Turchetti B, Vu D, Wang QM, Yurkov A. 2022. Trends in yeast diversity discovery. Fungal Diversity. 114(1):

–537. DOI: https://doi.org/10.1007/s13225-021-00494-6.

Botelho DM, de Resende MLV, de Rezende JC, Júnior PMR, Andrade CCL, Alves E, Amaral DC. 2019. Difference between isolates from brown eye spot and black spot lesions in coffee plants. Pesquisa Agropecuaria Brasileira. 54(1):1–4. DOI: https://doi.org/10.1590/S1678-3921.PAB2019.V54.01423.

Choińska R, Piasecka-Jóźwiak K, Chabłowska B, Dumka J, Łukaszewicz A. 2020. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology. 113(8):1135–1146. DOI: https://doi.org/10.1007/s10482-020-01420-7.

Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C. 2019. Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiology. 82:70–74. DOI: https://doi.org/10.1016/j.fm.2019.01.008.

Dalilla CR, Mauricio BF, Simone CB, Silvia B, Sergio FP. 2015. Antimicrobial activity of volatile organic compounds and their effect on lipid peroxidation and electrolyte loss in Colletotrichum gloeosporioides and Colletotrichum acutatum mycelia. African Journal of Microbiology Research. 9(23):1527–1535. DOI: https://doi.org/10.5897/ajmr2015.7425.

de Paula PVAA, Pozza EA, Alves E, Moreira SI, Paula JCA, Santos LA. 2019. Infection process of Cercospora coffeicola in immature coffee fruits. Coffee Science. 14(1):127–130.

Di Francesco A, Ugolini L, Lazzeri L, Mari M. 2015. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control. 81:8–14. DOI: https://doi.org/10.1016/ j.biocontrol. 2014.10.004.

Diana L, Lasmini T. 2016. Isolasi dan identifikasi khamir selulolitik dari tanah rizosfer anggrek puser bumi (Pecteilis susannae L.) di hutan Wonosadi Gunung Kidul DIY. Biogenesis. 4(1):21–28. DOI: https://doi.org/10.24252/bio.v4i1.1116.

Farbo MG, Urgeghe PP, Fiori S, Marcello A, Oggiano S, Balmas V, Hassan ZU, Jaoua S, Migheli Q. 2018. Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. International Journal of Food Microbiology. 284(1):1–10. DOI:


Ferraz P, Brandão RL, Cássio F, Lucas C. 2021. Moniliophthora perniciosa, the causal agent of cacao witches’ broom disease is killed in vitro by Saccharomyces cerevisiae and Wickerhamomyces anomalus yeasts. Frontiers in Microbiology. 12(1):1–15.

DOI: https://doi.org/10.3389/fmicb.2021.706675.

Ferraz P, Cássio F, Lucas C. 2019. Potential of yeasts as biocontrol agents of the phytopathogen causing cacao witches’ broom disease: is microbial warfare a solution? Frontiers in Microbiology. 10(1):1–13 DOI: https://doi.org/10.3389/fmicb.2019.01766.

Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. 2019. Biocontrol yeasts: mechanisms and applications. World Journal of Microbiology and Biotechnology. 35:154–173. DOI: https://doi.org/10.1007/s11274-019-2728-4.

Galván AI, Hernández A, Córdoba M de G, Martín A, Serradilla MJ, López-Corrales M, Rodríguez A. 2022. Control of toxigenic Aspergillus spp. in dried figs by volatile organic compounds (VOCs) from antagonistic yeasts. International Journal of Food Microbiology. 376(1):1–11. DOI:


Gil-Rodríguez AM, Garcia-Gutierrez E. 2021. Antimicrobial mechanisms and applications of yeasts. Advances in Applied Microbiology. 114(1):37–42. DOI: https://doi.org/10.1016/bs.aambs.2020.11.002.

Gross S, Kunz L, Müller DC, Santos Kron A, Freimoser FM. 2018. Characterization of antagonistic yeasts for biocontrol applications on apples or in soil by quantitative analyses of synthetic yeast communities. Yeast. 35(10):559–566. DOI: https://doi.org/10.1002/yea.3321.

Harni R, Samsudin AW, Indriati G, Soesanthy F, Khaerati, Taufiq E, Hasibuan AM, Haspari AD. 2015. Teknologi Pengendalian Hama dan Penyakit Tanaman Kopi. Badan Penelitian dan Pengembangan Pertanian. Jakarta (ID): IAARD Press.

Hernández-Fernández M, Cordero-Bueso G, Ruiz-Muñoz M, Cantoral JM. 2021. Culturable yeasts as biofertilizers and biopesticides for sustainable agriculture: A comprehensive review. Plants. 10(5):

–841. DOI: https://doi.org/10.3390/plants10050822.

Hernandez-Montiel LG, Droby S, Preciado-Rangel P, Rivas-García T, González-Estrada RR, Gutiérrez-Martínez P, Ávila-Quezada GD. 2021. A sustainable alternative for postharvest disease management and phytopathogens biocontrol in fruit: antagonistic yeasts. Plants. 10(12):

–2653. DOI: https://doi.org/10.3390/plants10122641.

Intana W, Kheawleng S, Sunpapao A. 2021. Trichoderma asperellum t76-14 released volatile organic compounds against post-harvest fruit rot in muskmelons (Cucumis melo) caused by Fusarium incarnatum. Journal of Fungi. 7(1):76–89. DOI: https://doi.org/10.3390/jof7010046.

Into P, Khunnamwong P, Jindamoragot S,

Am‐in S, Intanoo W, Limtong S. 2020. Yeast is associated with rice phylloplane and their contribution to control of rice sheath blight disease. Microorganisms. 8(3):

–374. DOI: https://doi.org/10.3390/microorganisms8030362.

Junior JSZ, Costa H, Dorzenoni RR, Guarçoni RC, Fornazier ML, Sossai SR, Botacim LA, Souza EMR, Ferrão MAG, Martins D dos S, Favarato LF, Fornazier MJ. 2022. Modeling the brown eye spot sampling in Arabica coffee. International Journal of Advanced Engineering Research and Science. 9(4):226–231. DOI: https://doi.org/10.22161/ijaers.94.26.

Kamel SM, Ebtsam MM, Massoud ON. 2016. Potentiality of some yeast species as biocontrol agents against Fusarium oxysporum f. sp. cucumerinum the causal agent of cucumber wilt. Egyptian Journal of Biological Pest Control. 26(2):185–193.

Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science. 10:1–19. DOI: https://doi.org/10.3389/fpls.2019.00845.

Kowalska J, Krzymińska J, Tyburski J. 2022. Yeasts as a potential biological agent in plant disease protection and yield improvement—a short review. Agriculture. 12(9):1404–1419. DOI: https://doi.org/10.3390/agriculture12091404.

Kuchen B, Garay SA, Gil RM, Vazquez F, Scaglia GJE. 2023. Optimization of batch reactors: Application to the biocontrol of spoilage yeasts in wines. IEEE Latin America Transactions. 21(2):217–225. DOI:


Kurtzman CP, Fell JW, Boekhout T. 2011. The Yeasts: A Taxonomic Study. Ed ke-5. Amsterdam (NL): Elsivier.

Laborde MCF, Botelho DMDS, Rodríguez GAA, de Resende MLV, de Queiroz MV, Batista AD, Cardoso PG, Pascholati SF, Gusmão LFP, Martins SJ, de Medeiros FHV. 2019. Phialomyces macrosporus reduces Cercospora coffeicola survival on symptomatic coffee leaves. Coffee Science. 14(1):1–11. DOI: https://doi.org/10.25186/cs.v14i1.1448.

Liu Z, Du S, Ren Y, Liu Y. 2018. Biocontrol ability of killer yeasts (Saccharomyces cerevisiae) isolated from wine against Colletotrichum gloeosporioides on grape. Journal of Basic Microbiology. 58(1):60–67. DOI: https://doi.org/10.1002/jobm.201700264.

Millan AFS, Gamir J, Larraya L, Farran I, Veramendi J. 2022. Towards understanding of fungal biocontrol mechanisms of different yeasts antagonistic to Botrytis cinerea through exometabolomic analysis. Biological Control. 174:105033(1–16).

DOI: https://doi.org/10.1016/j.biocontrol.2022.105033.

Montoya AM, Luna-Rodríguez CE, Bonifaz A, Treviño-Rangel RdeJ, Rojas OC, González GM. 2021. Physiological characterization and molecular identification of some rare yeast species causing onychomycosis. Journal of Medical Mycology. 31(2):

–121. DOI: https://doi.org/10.1016/j.mycmed.2021.101121.

Moreira-Morrillo AA, Vélez-Zambrano JP, Intra Moreira S, Garcés-Fiallos FR. 2023. Diseases affecting the coffee crop: Elucidating the life cycle of rust, thread blight and cercospora leaf spot. Scientia Agropecuaria. 13(3):395–412. DOI: https://doi.org/10.17268/sci.agropecu.2023.035.

Oufensou S, Ul Hassan Z, Balmas V, Jaoua S, Migheli Q. 2023. Perfume guns: potential of yeast volatile organic compounds in the biological control of mycotoxin-producing fungi. Toxins. 15(1):45–67. DOI: https://doi.org/10.3390/toxins15010045.

Quoc NB, Bao Chau NN. 2016. The role of cell wall degrading enzymes in pathogenesis of Magnaporthe oryzae. Current Protein and Peptide Science. 18(10):1019–1034. DOI: https://doi.org/10.2174/1389203717666160813164955.

Rani AT, Kammar V, Keerthi MC, Rani V, Majumder S, Pandey KK, Singh J. 2021. Biopesticides: An alternative to synthetic insecticides. Di dalam: Microbial Technology for Sustainable Environment. Singapore (SG): Springer. hlm 439–466. DOI: https://doi.org/10.1007/978-981-16-3840-4_23.

Resende LS, Pozza EA, Luz ALF, de Souza PE, Vilela MS, Castanheira DT, Guimarães RJ. 2022. Brown eye spot incidence during the vegetative stage of coffee grown in soil under sustainable management. Pesquisa Agropecuaria Brasileira. 57:e02477. DOI:


Ruiz-Moyano S, Hernández A, Galvan AI, Córdoba MG, Casquete R, Serradilla MJ, Martín A. 2020. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits. Food Microbiology. 92:103556.

DOI: https://doi.org/10.1016/j.fm.2020.103556.

Souza AGC, Herrero S, Daub ME. 2019. The toxin cercosporin is a virulence factor for infection of coffee by Cercospora coffeicola. BioRxiv. 1–24. DOI: https://www.biorxiv.org/content/10.1101/818328v1.full.

Streletskii RA, Kachalkin AV, Glushakova AM, Yurkov AM, Demin VV. 2019. Yeast produces zeatin. Peer Journal. 7(2):e6474. DOI: https://doi.org/10.7717/peerj.6474.

Tembo SM. 2020. Cercospora leaf spot of coffee: Cercospora coffeicola; (Brown Eye Spot, Berry Blotch in English). PlantwisePlus Knowledge Bank. https://plantwiseplusknowledgebank.org/doi/full/10.1079/pwkb.20207800276 [diakses 14 Nov 2023]. DOI: https://doi.org/10.1079/pwkb.20207800276.

Terryana RT, Ilmiyah N, Setyawati I, Haryati T, Mulya K, Riyanti EI, Sastro Y, Lestari P. 2022. Morphological, physiological, and molecular identification and characterization of yeast isolated from Indonesian fruits and woods. Di dalam: AIP Conference Proceedings The Second International Conference on Genetic Resources and Biotechnology: Harnessing Technology for Conservation and Sustainable Use of Genetic Resources for Food and Agriculture; 24–25 May 2021; Bogor (ID). 2462(1):060004. DOI: https://doi.org/10.1063/5.0075170.

Ting J, Xu R, Xu J. 2018. Molecular identification and distribution of yeasts in fruits. Di dalam: El Sheikha AF, Levin R, Xu J, editor. Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability. Hoboken (NJ): Wiley online library. hlm 115–144.

Vasco GB, Pozza EA, Scalco MS, Dias Santos LS, de Paiva Custódio AA, e Silva M de LO. 2015. Brown eye spot incidence in fruits of coffee: Different density planting and water managements. Coffee Science. 10(1):38–45.

Zajc J, Gostinčar C, Černoša A, Gunde-Cimerman N. 2019. Stress-tolerant yeasts: opportunistic pathogenicity versus bio-control potential. Genes. 10(1):42–65. DOI: https://doi.org/10.3390/genes10010042.

How to Cite
HartatiS., MeliansyahR., & MayantiT. (2024). Potensi Senyawa Volatil dari Khamir untuk Mengendalikan Cercospora coffeicola : Potency of Yeast’s Volatile Compounds to Control Cercospora coffeicola. Jurnal Fitopatologi Indonesia, 20(1), 1-16. https://doi.org/10.14692/jfi.20.1.1-14