Temporal Assessment of Seagrass Degradation on Singkep and Lingga Islands, Riau Islands Province, Indonesia (2016-2020)
DOI:
https://doi.org/10.29244/coj.v9i1.61813Keywords:
degradations, remote sensing, Riau Islands, seagrass, sentinel-2Abstract
Seagrass plays a crucial role in coastal ecosystems, necessitating its preservation to maintain ecosystem health. This study addresses the degradation of seagrass meadows in the coastal regions of the Riau Islands, Indonesia, utilizing remote sensing techniques and spatial data analysis. Satellite imagery offers a cost-effective means of monitoring seagrass health in shallow coastal waters. In October 2020, the research team conducted the study at six stations—four on Lingga Island and two on Singkep Island. Utilized Sentinel-2 satellite imagery from 2019 and applied the Depth Invariant Index (DII) along with Support Vector Machine (SVM) classification. In-situ observations, conducted simultaneously, validated the satellite data and facilitated seagrass accuracy assessment, including species identification using the Seagrass-Watch (Transect Quadrant) methodology. The results reveal significant seagrass degradation in the Riau Islands. The DII method detected extensive seagrass losses, covering approximately 175 km2 of seagrass meadows across Lingga and Singkep Islands. Species identification confirmed the presence of Halophila ovalis, Halophila minor, Thalassia hemprichii, and identified Enhalus acoroides as the dominant species. This research gives important insights into the temporal degradation of seagrass environments along the coastal regions of the Riau Islands, highlighting the importance of continued monitoring and preservation efforts.
Downloads
References
Ambomasse, Y. M., Irawan, A., & Paputungan, M. S. (2024). The Estimation of Carbon Stock in Seagrass Biomass of Kedindingan Island, East Kalimantan. Coastal and Ocean Journal, 8(1), 1–14.
Arselan, A., Haryanto, R. R. R., Tanaya, K. M. J., Fitri, R. R., Sianturi, L. N. E., Azzahra, R. Y., Putra, C. A. W., Abimanyu, D. H., & Sunuddin, A. (2025). Diversity and community structure of seagrass ecosystem at Menjangan Island, West Bali National Park. BIO Web of Conferences, 168, 1–12. https://doi.org/10.1051/bioconf/202516801008
Carpenter, S., Byfield, V., Felgate, S. L., Price, D. M., Andrade, V., Cobb, E., Strong, J., Lichtschlag, A., Brittain, H., Barry, C., Fitch, A., Young, A., Sanders, R., & Evans, C. (2022). Using Unoccupied Aerial Vehicles (UAVs) to Map Seagrass Cover from Sentinel-2 Imagery. Remote Sensing, 14(3), 477. https://doi.org/10.3390/rs14030477
Chen, Z., & Zhao, S. (2022). Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 113(May), 103010. https://doi.org/10.1016/j.jag.2022.103010
Congalton, R. G., & Green, K. (2010). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. In The Photogrammetric Record (Second Edi, Vol. 25, Issue 130). CRC Press. https://doi.org/10.1111/j.1477-9730.2010.00574_2.x
CoreMap-LIPI. (2014). Panduan monitoring padang lamun. In Pusat Penelitian Oseanografi Lembaga Ilmu Pengetahuan Indonesia (Issue 1).
Dekker, A. G., Phinn, S. R., Anstee, J., Bissett, P., Brando, V. E., Casey, B., Fearns, P., Hedley, J., Klonowski, W., Lee, Z. P., Lynch, M., Lyons, M., Mobley, C., & Roelfsema, C. (2011). Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnology and Oceanography: Methods, 9(SEP), 396–425. https://doi.org/10.4319/lom.2011.9.396
Elma, E., Gaulton, R., Chudley, T. R., Scott, C. L., East, H. K., Westoby, H., & Fitzsimmons, C. (2024). Evaluating UAV-based multispectral imagery for mapping an intertidal seagrass environment. Aquatic Conservation: Marine and Freshwater Ecosystems, 34(8), 1–14. https://doi.org/10.1002/aqc.4230
Fortes, M. D., Ooi, J. L. S., Tan, Y. M., Prathep, A., Bujang, J. S., & Yaakub, S. M. (2018). Seagrass in Southeast Asia: A review of status and knowledge gaps, and a road map for conservation. Botanica Marina, 61(3), 269–288. https://doi.org/10.1515/bot-2018-0008
Gunawan, T. S., Hamidah, M., Rahayu, A. K., & Septiani, N. N. (n.d.). National-scale mapping of ecosystems to improve ocean accounting for marine and coastal management in Indonesia. https://doi.org/10.3897/oneeco.10.e155166
Hemminga, M. A., & Duarte, C. M. (2000). Light, carbon and nutrients. In: Seagrass Ecology. In Seagrass Ecology. https://doi.org/10.1017/cbo9780511525551.005
James, R. K., Keyzer, L. M., van de Velde, S. J., Herman, P. M. J., van Katwijk, M. M., & Bouma, T. J. (2023). Climate change mitigation by coral reefs and seagrass beds at risk: How global change compromises coastal ecosystem services. Science of the Total Environment, 857(October 2022), 159576. https://doi.org/10.1016/j.scitotenv.2022.159576
Jones, B. L. H., Coals, L., Cullen-unsworth, L. C., & Lilley, R. J. (2025). Mapping global threats to seagrass meadows reveals opportunities for conservation Mapping global threats to seagrass meadows reveals opportunities for conservation.
Kuriandewa, T. E. (2009). Tinjauan Tentang Lamun di Indonesia. Lokakarya Nasional I Pengelolaan Ekosistem Lamun: Peran Ekosistem Lamun Dalam Produktivitas Hayati Dan Meregulasi Perubahan Iklim.
Lyzenga, D. R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17(3), 379. https://doi.org/10.1364/ao.17.000379
Manuputty, A., Lumban Gaol, J., & Agus, S. B. (2015). Seagrass Mapping Based on Satellite Image Worldview-2 by Using Depth Invariant Index Method. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 21(1), 37. https://doi.org/10.14710/ik.ijms.21.1.37-44
Mateo, M. A., Romero, J., Pérez, M., Littler, M. M., & Littler, D. S. (1997). Mateo 1997. Dynamics of millenary organic deposits resulting from the growth of P oceanica.pdf. In Estuarine Coastal and Shelf Science (Vol. 44, pp. 103–110).
McKenzie, L.J, Campbell, S., & Roder C, A. (2003). Seagrass-Watch: Manual for Mapping and Monitoring Seagrass Resources (2nd ed., Issue April 2003). Department of Primary Industries Queensland.
McKenzie, L. J., Langlois, L. A., & Roelfsema, C. M. (2022). Improving Approaches to Mapping Seagrass within the Great Barrier Reef: From Field to Spaceborne Earth Observation. Remote Sensing, 14(11). https://doi.org/10.3390/rs14112604
McKenzie, L. J., (2003). Guidelines for the rapid assessment of seagrass habitats in the western Pacific. Queensland: Department of Primary Industries, July, 78. 43pp. https://www.seagrasswatch.org/wp-content/uploads/Methods/manuals/PDF/SeagrassWatch_Rapid_Assessment_Manual.pdf
Mederos-Barrera, A., Marcello, J., Eugenio, F., & Hernández, E. (2022). Seagrass mapping using high resolution multispectral satellite imagery: A comparison of water column correction models. International Journal of Applied Earth Observation and Geoinformation, 113(July). https://doi.org/10.1016/j.jag.2022.102990
Mumby, P. J., Edwards, A. J., Green, E. P., Anderson, C. W., Ellis, A. C., & Clark, C. D. (1997). A visual assessment technique for estimating seagrass standing crop. Aquatic Conservation: Marine and Freshwater Ecosystems, 7(3), 239–251. https://doi.org/10.1002/(SICI)1099-0755(199709)7:3<239::AID-AQC240>3.0.CO;2-V
Mumby, P. J., Green, E. P., Edwards, A. J., & Clark, C. D. (1997a). Coral reef habitat-mapping: How much detail can remote sensing provide? Marine Biology, 130(2), 193–202. https://doi.org/10.1007/s002270050238
Mumby, P. J., Green, E. P., Edwards, A. J., & Clark, C. D. (1997b). Measurement of seagrass standing crop using satellite and digital airborne remote sensing. Marine Ecology Progress Series, 159, 51–60. https://doi.org/10.3354/meps159051
Nur, S., Nurdjaman, S., Dika Praba P Cahya, B., & Haidar Dzar Al-Ghifari, K. (2021). Integrating sentinel-2 spectral-imagery and field data of seagrass coverage with species identification in the coastal of Riau Islands, Indonesia. Borneo Journal of Marine Science and Aquaculture (BJoMSA), 5(2), 78–82. https://doi.org/10.51200/bjomsa.v5i2.2710
Pranowo, W. S., Wahyudi, A. J., Kurniawan, F., Antiaji, V., Triyo, Hardono, J., Sugiarta, Wirasantosa, & Nelly, E. (2019). Pedoman Pengukuran Karbon di Ekosistem Padang Lamun. In A. Rustam, N. Susetyo, Adi, & A. Daulat (Eds.), ITB Press (Vol. 5, Issue 1).
Priyansah, S., Dalimunthe, N. P., Sembiring, J., Arif, M., Kurnia, F., Syafutra, R., Adibrata, S., Lingga, R., Muhammadiyah, U., Belitung, B., Pinang, P., Nahdhatul, U., Sumatera, U., & Belitung, U. B. (2025). Eco-friendly feed innovation: An effective strategy to reduce fish mortality rates in Central Bangka. 10(4), 894–902.
Roca, M., Lee, C. B., Pertiwi, A. P., Blume, A., Caballero, I., Navarro, G., & Traganos, D. (2025). Subtidal seagrass and blue carbon mapping at the regional scale: a cloud-native multi-temporal Earth Observation approach. GIScience and Remote Sensing, 62(1). https://doi.org/10.1080/15481603.2024.2438838
Simpson, J., Davies, K. P., Barber, P., & Bruce, E. (2024). Mapping fine-scale seagrass disturbance using bi-temporal UAV-acquired images and multivariate alteration detection. Scientific Reports, 14(1), 1–16. https://doi.org/10.1038/s41598-024-69695-8
Tamondong, A. M., Blanco, A. C., Fortes, M. D., & Nadaoka, K. (2013). Mapping of seagrass and other benthic habitats in Bolinao, Pangasinan using Worldview-2 satellite image. International Geoscience and Remote Sensing Symposium (IGARSS), 1579–1582. https://doi.org/10.1109/IGARSS.2013.6723091
Thomasberger, A., Nielsen, M. M., Flindt, M. R., Pawar, S., & Svane, N. (2023). Comparative Assessment of Five Machine Learning Algorithms for Supervised Object-Based Classification of Submerged Seagrass Beds Using High-Resolution UAS Imagery. Remote Sensing, 15(14). https://doi.org/10.3390/rs15143600
Traganos, D., Lee, C. B., Blume, A., Poursanidis, D., Čižmek, H., Deter, J., Mačić, V., Montefalcone, M., Pergent, G., Pergent-Martini, C., Ricart, A. M., & Reinartz, P. (2022). Spatially Explicit Seagrass Extent Mapping Across the Entire Mediterranean. Frontiers in Marine Science, 9(July), 1–13. https://doi.org/10.3389/fmars.2022.871799
Wan, D. (2023). Research Progress on Degradation Factors and Restoration Technologies of Seagrass Beds. OAJRC Environmental Science, 4(1), 40–44. https://doi.org/10.26855/oajrces.2023.06.006
Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., & Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12377–12381. https://doi.org/10.1073/pnas.0905620106
Zhang, J., Liu, C., Ling, J., Zhou, W., Wang, Y., Cheng, H., Huang, X., Yang, Q., Zhang, W., Liang, T., Zhang, Y., & Dong, J. (2025). Revealing the potential of biochar for heavy metal polluted seagrass remediation from microbial perspective. Ecotoxicology and Environmental Safety, 292(October 2024), 117991. https://doi.org/10.1016/j.ecoenv.2025.117991