Potential of Neuraminidase from Pasteurella multocida for Inhibiting Avian Influenza Virus Subtype H9N2 Replication In Ovo

O. N. Poetri, C. M. H. Nugroho, O. S. M. Silaen, R. S. Kurnia, D. G. B. Krisnamurti, A. Indrawati, N. Hikmah, I. P. P. K. Hariyadi, M. A. Putra, A. Soebandrio

Abstract

In recent decades, neuraminidase/sialidase-based antivirals have been produced to suppress respiratory viral infections, including avian influenza, which relies on sialic acid as the entry point for viruses into cells. While neuraminidase has been extensively studied as an antiviral agent, numerous neuraminidases still have not been evaluated for their antiviral activities. Among these is NanB neuraminidase derived from Pasteurella multocida, which has received limited research attention. This study aimed to assess the potential of NanB neuraminidase in inhibiting H9N2 avian influenza virus infection in ovo. The research commenced with the molecular re-identification of the H9N2 A/Layer/Indonesia/WestJava-04/17 virus isolate, followed by determining the EID50 through Rapid HA test results. The toxicity of NanB neuraminidase was assessed by administering various doses to embryonated chicken eggs (ECE). The antiviral activity of NanB neuraminidase on ECE was evaluated through challenge tests, including treatment before, during, and after the challenge. The assessment involved monitoring the time of embryo death, virus titer through HA test, and viral copy number via RT-qPCR. The results indicated that the H9N2 virus titers capable of infecting 50% of ECE amounted to 108.83 EID50/mL. A dose of 0.258 U/mL of NanB neuraminidase was found to be toxic, leading to embryo mortality after 48 hours of incubation at 37 ℃, while a non-toxic dose was determined to be 0.129 U/mL. The post-challenge treatment group exhibited the most significant reduction in virus titer in ECE. Notably, NanB neuraminidase derived from P. multocida demonstrated the ability to inhibit H9N2 avian influenza virus infection in the ovo model, with the optimal dosage of 0.129 U/mL. The observed decrease in virus titers in the hemagglutination assay and viral copy number assays suggests that NanB neuraminidase holds promise as a potential antiviral candidate for therapeutic approach.

References

Darbar, S., S. Saha, K. Pramanik, & A. Chattopadhyay. 2018. Preliminary acute oral toxicity study of a newly developed herbal formulation. World J. Pharm. Res. 7:924-930.
Galluzzi, L., M. Ceccarelli, A. Diotallevi, M. Menotta, & M. Magnani. 2018. Real-time PCR applications for diagnosis of leishmaniasis. Parasites Vectors 11:273. https://doi.org/10.1186/s13071-018-2859-8
Ghoke, S. S., R. Sood, N. Kumar, A. K. Pateriya, S. Bhatia, A. Mishra, R. Dixit, V. K. Singh, D. N. Desai, D. D. Kulkarni, U. Dimri, & V. P. Singh. 2018. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complement Altern. Med. 18:1-10. https://doi.org/10.1186/s12906-018-2238-1
Heida, R., Y. C. Bhide, M. Gasbarri, O. Kocabiyik, F. Stellacci, A. L. W. Huckriede, W. L. J. Hinrichs, & H. W. Frijlink. 2021. Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discov. Today 26:122–137. https://doi.org/10.1016/j.drudis.2020.10.009
Huo, J. H., Y. Zhao, Z. Liu, X. Zhou, X. Chen, Y. Xianyu, S. Lewis, L. Fan, Y. Tian, N. Chang, Z. Gong, & K. Hu. 2020. Resolution of coronavirus disease 2019 infection and pulmonary pathology with nebulized DAS181: A pilot study. Crit. Care Explor. 2:e0263. https://doi.org/10.1097/CCE.0000000000000263
Ismail, Z. M., A. H. El-Deeb, M. M. El-Safty, & H. A. Hussein. 2018. Enhanced pathogenicity of low-pathogenic H9N2 avian influenza virus after vaccination with infectious bronchitis live attenuated vaccine. Vet World. 11:977–985. https://doi.org/10.14202/vetworld.2018.977-985
Juge, N., L. Tailford, & C. D. Owen. 2016. Sialidases from gut bacteria: A mini-review. Biochem. Soc. Trans. 44:166-175. https://doi.org/10.1042/BST20150226
Kausar, A., S. Anwar, N. Siddique, S. Ahmed, & J. I. Dasti. 2018. Prevalence of avian influenza H9N2 virus among wild and domesticated bird species across Pakistan. Pak. J. Zool. 50:1347-1354. https://doi.org/10.17582/journal.pjz/2018.50.4.1347.1354
Khairullah, A. R., S. C. Kurniawan, M. H. Effendi, S. A. Sudjarwo, S. C. Ramandinianto, A. Widodo, K. H. P. Riwu, O. S. M. Silaen, & S. Rehman. 2023. A review of new emerging livestock-associated methicillin-resistant Staphylococcus aureus from pig farms. Vet World. 16:46-58. https://doi.org/10.14202/vetworld.2023.46-58
Kurnia, R. S., S. Tarigan, C. M. H. Nugroho, O. S. M. Silaen, L. Natalia, F. Ibrahim, & P. P. Sudarmono. 2022a. Potency of bacterial sialidase Clostridium perfringens as antiviral of Newcastle disease infections using embryonated chicken egg in ovo model. Vet. World. 5:1896-1905. https://doi.org/10.14202/vetworld.2022.1896-1905
Kurnia, R. S., R. Setiawaty, K. K. N. Natih, C. M. H. Nugroho, O. S. M. Silaen, S. T. Widyaningtyas, S. Tarigan, F. Ibrahim, & P. P. Sudarmono. 2022b. Evaluation of inhibitor activity of bacterial sialidase from Clostridium perfringens against Newcastle disease virus in the cell culture model using chicken embryo fibroblast. J. Adv. Vet. Anim. Res. 92:335-345. https://doi.org/10.5455/javar.2022.i600
Nugroho, C. M. H., O. S. M. Silaen, R. S. Kurnia, R. D. Soejoedono, O. N. Poetri, & A. Soebandrio. 2021. Isolation and molecular characterization of the hemagglutinin gene of H9N2 avian influenza viruses from poultry in Java, Indonesia. J. Adv. Vet. Anim. Res. 8:423-434. https://doi.org/10.5455/javar.2021.h530
Nugroho, C. M. H., R. S. Kurnia, S. Tarigan, O. S. M. Silaen, S. Triwidyaningtyas, I. W. T. Wibawan, L. Natalia, A. K. Takdir, & A. Soebandrio. 2022. Screening and purification of NanB sialidase from Pasteurella multocida with activity in hydrolyzing sialic acid Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal. Sci. Rep. 12:9425. https://doi.org/10.1038/s41598-022-13635-x
Peacock, T. H. P., J. James, J. E. Sealy, & M. Iqbal. 2019. A global perspective on H9N2 avian influenza virus. Viruses 11:620. https://doi.org/10.3390/v11070620
Philippon, D. A. M., P. Wu, B. J. Cowling, & E. H. Y. Lau. 2020. Avian influenza human infections at the human-animal interface. J. Infect. Dis. 222:528–537. https://doi.org/10.1093/infdis/jiaa105
Pusch, E. A. & D. L. Suarez. 2018. The multifaceted zoonotic risk of H9N2 avian influenza. Vet. Sci. 5:82. https://doi.org/10.3390/vetsci5040082
Ramakrishnan, M. A. 2021. Determination of 50% endpoint titer using a simple formula. World J. Virol. 5:85-86. https://doi.org/10.5501/wjv.v5.i2.85
Rehman, S., M. I. Khan, F. A. Rantam, M. H. Effendi, A. Shehzad, & A. Tariq. 2021. Seroprevalence and associated risk factors of avian influenza virus subtype H9N2 in backyard poultry of Peshawar Pakistan. J. Indones. Trop. Anim. Agric. 46:209–218. https://doi.org/10.14710/jitaa.46.3.209-218
Rogers, G. N. & J. C Paulson. 1983. Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373. https://doi.org/10.1016/0042-6822(83)90150-2
Saadh, M. J., M. M. Aggag, A. Alboghdadly, A. M. Kharshid, S. M. Aldalaen, & M. A. Abdelrazek. 2021. Silver nanoparticles with epigallocatechin gallate and zinc sulphate significantly inhibits avian influenza A virus H9N2. Microb. Pathog. 158:105071. https://doi.org/10.1016/j.micpath.2021.105071
Shoimah, D., I. H. Djunaidi, & O. Sjofjan. 2019. Comparison of detection of antibodies due to exposure to AI virus subtype H5N1 in ducks in the tropics compared to subtropical areas. International Journal Scientific Research Engineering Development 2:598–606.
Vanderstocken, G., N. L. Woolf, G. Trigiante, J. Jackson, & R. McGoldrick. 2022. Harnessing the potential of enzymes as inhaled therapeutics in respiratory tract diseases: A review of the literature. Biomedicines 10:1440. https://doi.org/10.3390/biomedicines10061440
WHO. 2020. Cumulative Number of Confirmed Human Cases of Avian Influenza A (H5N1) Reported to WHO, 2003-2021. https://cdn.who.int/media/docs/default-source/influenza/h5n1-human-case-cumulative-table/2021_april_tableh5n1.pdf?sfvrsn=fc40672c_5&download=true [September 10, 2022].
WHO. 2022. Influenza at the Human-Animal Interface Summary and Assessment. https://cdn.who.int/media/docs/default-source/influenza/human-animal-interface-risk-assessments/influenza-at-the-human-animal-interface-summary-and-assessment--from-6-october-to-11-november-2022.pdf?sfvrsn=db9a4370_1&download=true [January 11, 2023].
Wilks, S., M. de Graaf, D. J. Smith, & D. F Burke. 2012. A review of influenza haemagglutinin receptor binding as it relates to pandemic properties. Vaccine 30:4369–4376. https://doi.org/10.1016/j.vaccine.2012.02.076
Zheng, A., W. Sun, X. Xioang, A. W. Freyn, J. Peukes, S. Strohmeier, R. Nachbagauer, J. A. G. Briggs, F. Krammer, & P. Palese. 2020. Enhancing sialidase immunogenicity of influenza A viruses by rewiring RNA packaging signals. J. Virol. 94. https://doi.org/10.1128/JVI.00742-20

Authors

O. N. Poetri
C. M. H. Nugroho
O. S. M. Silaen
ottosiyl@gmail.com (Primary Contact)
R. S. Kurnia
D. G. B. Krisnamurti
A. Indrawati
N. Hikmah
I. P. P. K. Hariyadi
M. A. Putra
A. Soebandrio
Author Biography

O. S. M. Silaen, Animal Health Diagnostic Unit, PT Medika Satwa Laboratoris

The author also takes a Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia

PoetriO. N., NugrohoC. M. H., SilaenO. S. M., KurniaR. S., KrisnamurtiD. G. B., IndrawatiA., HikmahN., HariyadiI. P. P. K., PutraM. A., & SoebandrioA. (2023). Potential of Neuraminidase from Pasteurella multocida for Inhibiting Avian Influenza Virus Subtype H9N2 Replication In Ovo. Tropical Animal Science Journal, 46(4), 487-493. https://doi.org/10.5398/tasj.2023.46.4.487

Article Details