Productivity and Nutritive Value of Mutant Benggala Grass (Panicum maximum cv Purple Guinea) in the Saline Soil of Coastal Area in Lebak-Banten Province

A. Fanindi, E. Sutedi, I. Herdiawan, Sajimin, H. Harmini, C. Hidayat, R. Krisnan, D. Yulistiani

Abstract

The coastal region of Lebak-Banten is an area with a relatively high population of buffalo. The forage requirement has relied on existing forage with low productivity and quality. The study aimed to investigate the physiological, morphological, and nutritional response of mutant benggala grass in the coastal area and to develop salt-tolerant forage crops with high productivity and nutritive value for livestock. The research was conducted in the Binuangeun coastal area, Muara Village, Wanasalam District, Lebak Regency, located at 6°50’34.4”S and 105°53’23.4”E. This study used a completely randomized block design with a factorial arrangement with 5 replications. The first factor consisted of 4 benggala grass mutants: mutant 12, 18, 36, 56, and a control. The second factor was the location or distance of the planting plots from the coastline (FC), consisting of L1: 50 m FC, L2: 75 m FC, L3: 100 m FC, and L4: 500 m FC, representative of low, moderate, and high salinity levels, and no saline. Observations were made during the dry and rainy seasons. The results showed that mutants 12 and 36 had higher fresh forage production during the rainy season, while mutant 36 had the highest forage production at the L1 location (high salinity conditions) during the dry season. Mutant 12 had higher crude protein values at the L2 location (moderate salinity) than the other mutants and locations (salinity levels) during the dry season. Meanwhile, mutant 18 at the L2 location (moderate salinity) had the highest crude protein value during the rainy season. In addition, mutant 12 had a high proline value at the L1 location (high salinity stress) as a plant adaptation response to salinity stress. The study suggests that mutants 12 and 36 have great potential to be developed into new salt-tolerant forage crop cultivars and can be grown in coastal areas of Lebak-Banten.

References

Akhter, S., F. Qiao, K. Wu, X. Yin, K. M. A. Chowdhury, & N. U. M. K. Chowdhury. 2021. Seasonal and long-term sea-level variations and their forcing factors in the northern Bay of Bengal: A statistical analysis of temperature, salinity, wind stress curl, and regional climate index data. Dynamics Atmospheres Oceans 95:101239. https://doi.org/10.1016/j.dynatmoce.2021.101239
Amombo, E., D. Ashilenje, A. Hirich, L. Kouisni, A. Oukarroum, C. Ghoulam, M-El. Gharous, & A. Nilahyane. 2022. Exploring the correlation between salt tolerance and yield: Research advances and perspectives for salttolerant forage sorghum selection and genetic improvement. Planta 255:1-16. https://doi.org/10.1007/s00425-022-03847-w
Angiolini, C., G. Bonari, & M. Land. 2018. Focal plant species and soil factors in Mediterranean coastal dunes: An undisclosed liaison?. Estuar. Coast. Shelf Sci. 211:248-258. https://doi.org/10.1016/j.ecss.2017.06.001
Baiseitova, G., B. Sarsenbayev, E. Kirshibayev, & M. Kamunur. 2018. Influence of salinity (NaCl) on the photosynthetic pigments content of some sweet sorghum varieties. Infuence of salinity (NaCl) on the photosynthetic pigments content of some sweet sorghum varieties. BIO Web Conf. 11:00003. https://doi.org/10.1051/bioconf/20181100003
Bates, L. S., R. P. Waldren, & I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060
BPS. 2022. Banten Province in Figures 2022. BPS-Statistics of Banten Province, Banten.
BPS. 2022. Lebak Regency in Figures 2022. BPS-Statistics of Lebak Regency, Lebak.
Bureenok, S., K. Sisaath, C. Yuangklang, K. Vasupen, & J. T. Schonewille. 2016. Ensiling characteristics of silages of Stylo legume (Stylosanthes guianensis), Guinea grass (Panicum maximum) and their mixture, treated with fermented juice of lactic bacteria, and feed intake and digestibility in goats of rations based on these silages. Small Rumin. Res. 134:84–89. https://doi.org/10.1016/j.smallrumres.2015.12.006
Chang, Y., P. Li, G. Xu, Z. Li, S. Cheng, & H. Gao. 2016. Spatial distribution of soil total phosphorus in Yingwugou watershed of the Dan River, China. Catena 136:175–181. https://doi.org/10.1016/j.catena.2015.02.015
Daliakopoulos, I. N., I. K. Tsanis, A. Koutroulis, N. N. Kourgialas, A. E. Varouchakis, G. P. Karatzas, & C. I. Ritsema. 2016. The threat of soil salinity: A European scale review. Sci. Total Environ. 573:727–739. https://doi.org/10.1016/j.scitotenv.2016.08.177
Elbasiouny, H., F. Elbehiry, H. El-Ramady, & E. C. Brevik. 2020. Phosphorus availability and potential environmental risk assessment in alkaline soils. Agriculture 10:172. https://doi.org/10.3390/agriculture10050172
Fadillah, M. A. 2010. Kerbau dan Masyarakat Banten: Perspektif Etno-Historis in: Talib C, Herawati T, Matondang RH, Praharani L, editors. Seminar dan Lokakarya Nasional Kerbau. Bogor (ID): Puslitbangnak. p. 23-29.
Fanindi, A., S. H. Sutjahjo, S. I. Aisyah, & N. D. Purwantari. 2019. Morphological characteristics and productivity of guinea grass (Panicum maximum cv purple guinea) irradiated with gamma-ray. Trop. Anim. Sci. J. 42:97–105. https://doi.org/10.5398/tasj.2019.42.2.97
Fanindi, A., S. H. Sutjahjo, S. I. Aisyah, & N. D. Purwanti. 2022. Morphological characteristics and nutritional quality of mutant Benggala Grass (Panicum maximum cv purple guinea) generation M1V3. Trop. Anim. Sci. J. 45:327-336. https://doi.org/10.5398/tasj.2022.45.3.327
Gorham, J., A. Läuchli, & E. O. Leidi. 2010. Plant Responses to Salinity. Physiology of Cotton. Springer, Dordrecht, p. 129–141. https://doi.org/10.1007/978-90-481-3195-2_13
Gupta, B. & B. Huang. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genomics 2014:701596. https://doi.org/10.1155/2014/701596
Hakim, M. A., A. S. Juraimi, M. M. Hanafi, M. R. Ismail, A. Selamat, M. Y. Rafii, & M. A, Latif. 2014. Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes. BioMed Res. Int. 2014:111. https://doi.org/10.1155/2014/208584
Hedayati-Firoozabadi, A., S. A. Kazemeini, H. Pirasteh-Anosheh, H. Ghadiri, & M. Pessarakli. 2020. Forage yield and quality as affected by salt stress in different ratios of Sorghum bicolor-Bassia indica intercropping. J. Plant Nutr. 43:2579-2589.  https://doi.org/10.1080/01904167.2020.1783301
Huang, L., X. Liu, Z. Wang, Z. Liang, M. Wang, M. Liu, & D. L. Suarez. 2017. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agric. Water Manag. 94:48–57. https://doi.org/10.1016/j.agwat.2017.08.012
Hussain, T., B. Huchzermeyer, H.-W. Koyro, & M. A. Khan. 2019. Linkage between leaf development and photosynthetic response at hyperosmotic salinity in the C-4 grass Panicum antidotale. Flora 256:52–60.  https://doi.org/10.1016/j.flora.2019.05.003
Ibrahim, M. E., A. Adam, G. Zhou, E. Aboagla, G. Zhu, N. Nimir, & I. Ahmed. 2020. Biochar application afects forage sorghum under salinity stress. Chil. J. Agric. Res. 80:317–325. https://doi.org/10.4067/S0718-58392020000300317
Ironkwe, M. O. & A. I. Ukanwoko. 2016. The evaluation of concentrate and forage combination on the performance and litter weight of New Zealand Rabbit. Greener Journal Agricultural Sciences 6:312-315. https://doi.org/10.15580/GJAS.2016.10.102616172
Javaid, T., M. A. Farooq, J. Akhtar, Z. A. Saqib, & M. Anwar-ul-Haq. 2019. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl− and mineral ions. Plant Physiol. Biochem. 141:291–299.  https://doi.org/10.1016/j.plaphy.2019.06.010
Katuwal, K. B., B. Xiao, & D. Jespersen. 2020. Physiological responses and tolerance mechanisms of seashore paspalum and centipede grass exposed to osmotic and iso-osmotic salt stresses. J. Plant Physiol. 248:153154. https://doi.org/10.1016/j.jplph.2020.153154
Kholaiq, M., S. Benmessaoud, M. Kara, A. Assouguem, A. M. Abbasi, A. A. Al-Ghamdi, M. S. Elshikh, A. Rahimi, & N. Saber. 2022. Sustainability of coastal agriculture in the face of soil degradation: The influence of water salinization as an example. Sustainability 14:13641 https://doi.org/10.3390/su142013641
Krishnamurthy, S. L., R. Gautam, P. C. Sharma, & D. K. Sharma. 2016. Effect of different salt stresses on agro-morphological traits and utilization of salt stress indices for reproductive stage salt tolerance in rice. Field Crops Res. 190:26–33.  https://doi.org/10.1016/j.fcr.2016.02.018
Kumar, A., A. Kumar, P. Kumar, C. Lata, & S. Kumar. 2018. Effect of individual and interactive alkalinity and salinity on physiological, biochemical and nutritional traits of Marvel grass. Indian J. Exp. Biol. 56:573-581.
Kutbay, H. G. & B. Sürmen. 2022. Ellenberg ecological indicator values, tolerance values, species niche models for soil nutrient availability, salinity, and pH in coastal dune vegetation along a landward gradient (Euxine, Turkey). Turk. J. Botany 46:346-360. https://doi.org/10.55730/1300-008X.2714
Laiskhanov, S. U., Z. M. Smanov, K. D. Kaimuldinova, N. B. Myrzaly, N. E. Ussenov, M. N. Poshanov, & B. Azimkhanov. 2022. A Study of the effects of soil salinity on the growth and development of maize (Zea mays L.) by using sentinel-2 imagery. OnLine Journal Biological Sciences 22:323-332. https://doi.org/10.3844/ojbsci.2022.323.332
Liang, J., Y. Li, B. Si, Y. Wang, X. Chen, X. Wang, & A. Biswas. 2021. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Sci. Total Environ. 771:144802.   https://doi.org/10.1016/j.scitotenv.2020.144802
Masters, D. G., S. E. Benes, & H. C. Norman. 2007. Biosaline agriculture for forage and livestock production. Agric. Ecosyst. Environ. 119:234–248.  https://doi.org/10.1016/j.agee.2006.08.003
Medina-Gómez, I., B. Kjerfve, I. Mariño, & J. Herrera-Silveira. 2014. Sources of salinity variation in a coastal lagoon in a Karst Landscape. Estuaries Coasts 37:1329–1342.   https://doi.org/10.1007/s12237-014-9774-9
Nabati, J., M. Kafi, A. Nezami, P. R. Moghaddam, A. Masoumi, & M. Z. Mehrgerdi. 2014. Evaluation of quantitative and qualitative characteristics of forage kochia (Kochia scoparia) in different salinity levels and time. Iranian Journal Field Crops Research 12:613–620.
Pereira, M. de G., G. dos S. Difante, L. C. V. Ítavo, J. G. Rodrigues, A. L. C. Gurgel, A. M. Dias, C. C. B. F. Ítavo, E. L. de L. Veras, A. B. G. da Costa, & G. O. de A. Monteiro. 2021. Production potential and quality of Panicum maximum cultivars established in a semi-arid environment. Trop. Anim. Sci. J. 45:308-318. https://doi.org/10.5398/tasj.2022.45.3.308
Radhakrishna, A., K. K. Dwivedi, M. K. Srivastava, A. K. Roy, D. R. Malaviya, & P. Kaushal. 2018. Transcriptomic data of pre-meiotic stage of floret development in apomictic and sexual types of guinea grass (Panicum maximum Jacq.). Data Brief 18:590–593. https://doi.org/10.1016/j.dib.2018.03.001
Razzaghi, F., E. Arthur, & A. A. Moosavi. 2021. Evaluating models to estimate cation exchange capacity of calcareous soils. Geoderma 400:115221. https://doi.org/10.1016/j.geoderma.2021.115221
Rusdiana, S., C. Talib, & A. Anggraeni. 2019. Supporting and empowering the buffalo farmers in Banten Province. Forum Penelitian Agro Ekonomi 37:95-114. https://doi.org/10.21082/fae.v37n2.2019.95-114
Shepherd, M. A. & G. Bennett. 1998. Nutrient leaching losses from a sandy soil in lysimeter. Commun. Soil Sci. Plant Anal. 29:931-946. https://doi.org/10.1080/00103629809369997
Sulaeman, Suparto, & Eviati. 2015. Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Balai Penelitian Tanah. Badan Penelitian dan Pengembangan Pertanian. Departemen Pertanian, Jakarta. p. 136.
Surender, R. P., G. Jogeswar, G. K. Rasineni, M. Maheswar, A. R. Reddy, R. K. Varshney, & P. B. K. Kishor. 2015. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol. Biochem. 94:104–113. https://doi.org/10.1016/j.plaphy.2015.05.014
Tahir, S. & P. Marschner. 2017. Clay addition to sandy soil reduces nutrient leaching-effect of clay concentration and ped size. Commun. Soil Sci. Plant Anal. 48:1813–1821.  https://doi.org/10.1080/00103624.2017.1395454
Tesfaye, M. A., F. Bravo, R. Ruiz-Peinado, V. Pando, & A. Bravo-Oviedo. 2016. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261:70-79. https://doi.org/10.1016/j.geoderma.2015.06.022
Thiex, N., J. H. Manson, S. Andersson, & J. A Persson. 2002. Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: Collaborative study. J. AOAC Int. 85:309-317. https://doi.org/10.1093/jaoac/85.2.309
Tripathi, B. M., J. C. Stegen, M. Kim, K. Dong, J. M. Adams, & Y. K. Lee. 2018. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME Journal 12:1072-1083. https://doi.org/10.1038/s41396-018-0082-4
Turner, N. C. 2018. Turgor maintenance by osmotic adjustment: 40 years of progress. J. Exp. Bot. 69:3223–3233. https://doi.org/10.1093/jxb/ery181
Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds
Waldron, B. L., J. K. Sagers, M. D. Peel, C. W. Rigby, B. Bugbee, & J. E. Creech. 2020. Salinity reduces the forage quality of forage Kochia: A halophytic Chenopodiaceae shrub. Rangel. Ecol.Manag. 73:384-393. https://doi.org/10.1016/j.rama.2019.12.005
Wasim, M. A., N. Naz, & S. S. Zehra. 2021. Anatomical characteristic, ionic contents and nutritional potential of Buffel grass (Cenchrus ciliaris L.) under high salinity. S. Afr. J. Bot. 144:471-479. https://doi.org/10.1016/j.sajb.2021.09.015
Yilmaz, S., R. Temizgü, C. Yürürdurmaz, & M. Kaplan. 2020. Oxidant and antioxidant enzyme response of redbine sweet sorghum under NaCl salinity stress. Bioagro 32:31–38.
Zhou, W., G. Han, M. Liu, & X. Li. 2019. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ 7:e7880 https://doi.org/10.7717/peerj.7880
Zörb, C., C. M. Geilfus, & K. J. Dietz. 2019. Salinity and crop yield. Plant Biol. 21:31– 38. https://doi.org/10.1111/plb.12884

Authors

A. Fanindi
afanindi@gmail.com (Primary Contact)
E. Sutedi
I. Herdiawan
Sajimin
H. Harmini
C. Hidayat
R. Krisnan
D. Yulistiani
FanindiA., SutediE., HerdiawanI., Sajimin, HarminiH., HidayatC., KrisnanR., & YulistianiD. (2023). Productivity and Nutritive Value of Mutant Benggala Grass (Panicum maximum cv Purple Guinea) in the Saline Soil of Coastal Area in Lebak-Banten Province. Tropical Animal Science Journal, 46(4), 439-450. https://doi.org/10.5398/tasj.2023.46.4.439

Article Details