Machine Learning-Based Mapping of Mangrove Forest Changes from Sentinel-2 in Balikpapan Bay, East Kalimantan

Muhammad Abdul Ghofur Al Hakim, S.Kel., M.Si(1) , Dr. Maya Eria Br Sinurat, S.Kel, M.Si(2) , Nurul Ain Najwa Zulkifle(3) , Nurmawati(4) , Ahmad Azwar Mas’ud M(5)
(1) Ocean Engineering, Faculty of Sustainable Development, Kalimantan Technologi of Institut, Balikpapan 76127, Indonesia,
(2) Department of Marine Science, Faculty of Fishery and Marine Science, Jenderal Soedirman University, Purwokerto 53122, Indonesia,
(3) Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia,
(4) Ocean Engineering, Faculty of Sustainable Development, Kalimantan Technologi of Institut, Balikpapan 76127, Indonesia,
(5) Ocean Engineering, Faculty of Sustainable Development, Kalimantan Technologi of Institut, Balikpapan 76127, Indonesia

Abstract

Balikpapan Bay contains extensive mangrove forests which play an important role as habitat for a range of species and in providing a range of ecosystem services. In recent years, the mangrove forests around Balikpapan Bay are increasingly being lost and degraded due to development pressures. Thus, change detection in mangrove ecosystem has become highly relevant, as it can provide essential information to support the conservation practices and coastal management. This study aims to map mangrove forest change in Balikpapan Bay, East Kalimantan over a five-year period from Sentinel-2 using machine learning. Five machine learning algorithms (Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Tree (CART), K-Nearest Neighbors (KNN), and Minimum Distance), implemented on the Google Earth Engine platform, were evaluated to determine the most suitable method. The evaluation results indicate that RF, SVM, and CART yielded mangrove mapping accuracies of 80% or higher. Notably, the CART algorithm surpassed the other tested models, demonstrating the highest overall accuracy of 84% and a Kappa coefficient of 0.78. Mapping using the selected CART model shows that, between 2020 and 2025, mangrove areas in Balikpapan Bay decreased by 21% (2,906.17 ha). Approximately 97% (2,834.49 ha) of this loss is concentrated in the North Penajam Paser, which has a high rate of land conversion to built-up areas.

Full text article

Generated from XML file

References

Afifah, N., Setiawan, A. R., & Lathiifunnisa, R. (2024). Pemetaan prediksi perubahan kondisi mangrove menggunakan citra Sentinel-2 dan indeks vegetasi turunan pada kawasan Teluk Balikpapan. Conference Paper: Seminar Nasional Geomatika VII Tahun 2024: Informasi Geospasial Untuk Ibu Kota Nusantara. Retrietrosved from https://www.researchgate.net/publication/

Anwar, Y., Setyasih, I., Ardiansyah, A., Partini, D., Dewi, R. P., & Wibowo, Y. A. (2021). Identification of Mangrove Forest Damage, and Effort to Conservation in Balikpapan City, East Kalimantan, Indonesia. Universitas Mulawarman Repository. https://doi.org/10.20961/ge.v7i2.46360

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression Trees. CRC Press.

Cipta, I., M., Sobarman, F. A., Sanjaya, H., & Darminto, M. R. (2021). Analysis of mangrove forest change from multi‑temporal Landsat imagery using Google Earth Engine application: Case study – Belitung Archipelago 1990–2020. In Proceedings of the 2021 IEEE Asia‑Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS) (pp. 90-95). IEEE. https://doi.org/10.1109/AGERS53903.2021.9617354

Congalton, R.G. & Green, K. (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Florida’ Lewis Publishers, Boca Rotan, 43-64. https://doi.org/10.1201/9781420048568

Congalton, R. G. (2001). Accuracy assessment and validation of remotely sensed and other spatial information. International Journal of Wildland Fire, 10(4), 321-328. https://doi.org/10.1071/WF01031

Congalton, R. G., & Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 2nd Ed. Boca Raton: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781420055139

Farda, N. M. (2017). Multi-temporal land use mapping of coastal wetlands area using machine learning in Google earth engine. IOP Conference Series: Earth and Environmental Science, 98(1), p. 012042. https://doi.org/10.1088/1755-1315/98/1/012042

Fariz, T. R., & Nurhidayati, E. (2020). Mapping land coverage in the Kapuas Watershed using machine learning in Google Earth Engine. Journal of Applied Geospatial Information, 4(2), 390-395. https://doi.org/10.30871/jagi.v4i2.2256

Fariz, T. R., Permana, P. I., Daeni, F., & Putra, A. C. P. (2021a). Pemetaan Ekosistem Mangrove di Kabupaten Kubu Raya Menggunakan Machine Learning pada Google Earth Engine. Jurnal Geografi, 18(2), 83-89. https://doi.org/10.15294/jg.v18i2.30231

Fariz, T. R., Daeni, & F., Sultan, H. (2021b). Pemetaan Perubahan Penutup Lahan di Sub-DAS Kreo Menggunakan Machine Learning Pada Google Earth Engine. Jurnal Sumberdaya Alam dan Lingkungan, 8(2), 85-92. https://doi.org/10.21776/ub.jsal.2021.008.02.4

Feng, S., Zhao, J., Liu, T., Zhang, H., Zhang, Z., & Guo, X. (2019). Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9), pp. 3295-3306 https://doi.org/10.1109/JSTARS.2019.2922469

Google Earth Engine. (2021). Available at: https://earthengine.google.com/. (Accessed 3 September 2021).

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, & D., Moore, R. (2017). Google earth engine: Planetary scale geospatial analysis for everyone. Remote sensing of Environment, 202: 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Gorelick, N. (2021). Announcement: Old classifiers will stop working on March 1. Accessed 2 Juli 2021, http://goo.gle/deprecated-classifiers.

Hasrul, A., Khakhim, N., & Suadi, S. (2023). Pemetaan Dinamika Perubahan Tutupan Kawasan Mangrove Berbasis Pendekatan Komputasi Awan di Teluk Pacitan: Mapping of The Dynamic Changes Coverage of Mangrove Area Based on A Cloud Computation Approach in Pacitan Bay. Jurnal Hidropilar, 9(1), 31–42. https://doi.org/10.37875/hidropilar.v9i1.279

Hendrawan, Gaol, J. L., & Susilo, S. B.(2018). Studi Kerapatan Dan Perubahan Tutupan Mangrove Menggunakan Citra Satelit Di Pulau Sebatik Kalimantan Utara. Jurnal Ilmu dan Teknologi Kelautan Tropis. 10 (1) : 99-109. http://dx.doi.org/10.29244/jitkt.v10i1.18595

Husnayaen, H., Amela, P., Arini, D. P., & Putra, I K. A. (2023). Pemetaan Sebaran Dan Kerapatan Hutan Mangrove Menggunakan Machine Learning Pada Google Earth Engine Dan Sistem Informasi Geografi di Pulau Bali. Journal Perikanan, 13(1), 266-277. http://doi.org/10.29303/jp.v13i1.474

Kamal, M., Farda, N. M., Jamaluddin, I., Parela, A., Wikantika, K., Prasetyo, L. B., & Irawan, B. (2020). A preliminary study on machine learning and google earth engine for mangrove map ping. IOP Conference Series: Earth and Environ mental Science, 500(1), p. 012038). https://doi.org/10.1088/1755-1315/500/1/012038

Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote Sensing and Image Interpretation (7th ed.). Wiley

Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classifica tion in remote sensing: An applied review. In ternational Journal of Remote Sensing, 39(9), 2784-2817. https://doi.org/10.1080/01431161.2018.1433343

Neetu & Ray, S. S. (2019). Exploring Machine Learning Classification Algorithms for Crop Classification Using Sentinel 2 Data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-3/W6, 573–578. https://doi.org/10.5194/isprs-archives-XLII-3-W6-573-2019

Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86(4), 554–565. https://doi.org/10.1016/S0034-4257(03)00132-9

Phiri, D., & Morgenroth, J. (2017). Developments in the application of Sentinel-2 data for forest studies. Remote Sensing, 9(12), 1272. https://doi.org/10.3390/rs9090967

Pratama, A. T., Prasetio, & W., Prasetyo, B. A. (2025). Efektifitas Identifikasi Perubahan Tutupan Mangrove Menggunakan Citra Landsat-8 di Kecamatan Labuhan Maringgai, Lampung Timur. J SIG (Jurnal Sains Informasi Geografi), 8(1), 1-11. https://doi.org/10.31314/jsig.v8i1.3067

Prins, A. J., & Van Niekerk, A. (2021). Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms. Geo-Spatial Information Science, 24(2), 215–227. https://doi.org/10.1080/10095020.2020.1782776

Putra, R. D., Napitupulu, H. S., Nugraha, A. H., Suhana, M. P., Ritonga, A. R., Sari, T. E. Y. (2022). Pemetaan Luasan Hutan Mangrove Dengan Menggunakan Citra Satelit di Pulau Mapur, Provinsi Kepulauan Riau. Jurnal Kelautan Tropis, 25(1), 20-30. https://doi.org/10.14710/jkt.v25i1.12294

Rahmadi, M.T., Yuniastuti, E., Hakim, M.A., Suciani, A. 2022. Pemetaan Distribusi Mangrove Menggunakan Citra Sentinel-2A: Studi Kasus Kota Langsa. Jambura Geoscience Review, 4(1), 1-10. https://doi.org/10.34312/jgeosrev.v4i1.11380

Rosalina, D., Sabilah, A. A., Rombe, K. H., Warni. 2024. Mapping of Mangrove Conditions Using Sentinel-2 Imagery. Jurnal Sains dan Teknologi, 14(1), 89-98. https://doi.org/10.23887/jstundiksha.v13i1.65281

Saputra, R., Gaol, J. L., Agus, S. B. (2021). Studi Perubahan Tutupan Lahan Mangrove Berbasis Objek (OBIA) Menggunakan Citra Satelit di Pulau Dompak Provinsi Kepulauan Riau. J. Ilmu dan Teknologi Kelautan Tropis. 13 (1) : 39-55. https://doi.org/10.29244/jitkt.v13i1.27886

Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science, 5, 17. https://doi.org/10.3389/feart.2017.00017

Story, M., & Congalton, R. G. (1986). Accuracy as sessment: a user’s perspective. Photogrammetric Engineering and remote sensing, 52(3), 397-399.

Takarendehang, R., Sondak, C. F.A., Kaligis, E., Kumampung, D., Manembul, I. S., & Rembet U. N.W.J. (2018). Kondisi Ekologi Dan Nilai Manfaat Hutan Mangrove Di Desa Lansa, Kecamatan Wori, Kabupaten Minahasa Utara. Jurnal Pesisir dan Laut Tropis, 2(1), 45–52. https://doi.org/10.35800/jplt.6.2.2018.21526

Wang, L., Yang, C., Guo, J., Song, Y., & Li, R. (2021). Sentinel-2 Remote Sensing Image-Based Mangrove Classification and Distribution Analysis for Coastal Regions. Frontiers in Marine Science, 8, 706249. https://doi.org/10.3389/fmars.2021.706249

Warsidi, W. & Endayani, S. 2017. Komposisi Vegetasi Mangrove di Teluk Balikpapan Provinsi Kalimantan Timur. Jurnal AGRIFOR. 16(1), 115–124. https://doi.org/10.31293/af.v16i1.2598

Authors

Muhammad Abdul Ghofur Al Hakim, S.Kel., M.Si
abdul.hakim@lecturer.itk.ac.id (Primary Contact)
Dr. Maya Eria Br Sinurat, S.Kel, M.Si
Nurul Ain Najwa Zulkifle
Nurmawati
Ahmad Azwar Mas’ud M
Machine Learning-Based Mapping of Mangrove Forest Changes from Sentinel-2 in Balikpapan Bay, East Kalimantan. (2025). Jurnal Ilmu Dan Teknologi Kelautan Tropis, 17(3), 549-557. https://doi.org/10.29244/jitkt.17.3.67707

Article Details

How to Cite

Machine Learning-Based Mapping of Mangrove Forest Changes from Sentinel-2 in Balikpapan Bay, East Kalimantan. (2025). Jurnal Ilmu Dan Teknologi Kelautan Tropis, 17(3), 549-557. https://doi.org/10.29244/jitkt.17.3.67707
No Related Submission Found