Hard Coral (Porites Lutea) Growth Simulation using Fuzzy Logic Method in Tunda Waters, Banten Province

Muhamad Kemal Idris(1) , Alan Frendy Koropitan(2) , Neviaty P Zamani(3)
(1) Graduate Student of Marine Science, Bogor Agricultural University,
(2) Department of Marine Science and Technology, IPB University, Darmaga Campus, Bogor 16680, Indonesia,
(3) Department of Marine Science and Technology, IPB University, Darmaga Campus, Bogor 16680, Indonesia

Abstract

Corals grow annually at varying rates, influenced by environmental conditions. As key indicators of marine ecosystem health, studying coral growth is essential for predicting the impacts of environmental change. While previous research has explored coral growth extensively, most studies focus on existing conditions and the descriptive influence of environmental parameters. In fact, coral growth time-series data offer potential for deeper analysis, particularly in identifying dominant periodicities and enabling long-term projections. This study aims to develop an annual coral growth model using fuzzy logic approach. The Indian Ocean Dipole (IOD) is identified as a significant factor influencing the growth of Porites lutea in Tunda Island. Variations in sea surface temperature during IOD events notably affect coral growth, with positive IOD phases (IOD+) generally enhancing it. Analysis shows that the annual growth rings of Porites lutea in the northern station of Tunda Island, which borders open waters respond more slowly to SST fluctuations compared to the southern station, which is more sheltered. Fuzzy simulation results suggest that corals may be able to adapt to climate change. By the year 2085, coral growth is projected to recover from -0.75 cm to 0.1 cm by 2100. Based on SST projections from 1900 to 2100, SST anomalies are expected to continue increasing, reaching +0.45 °C.

Full text article

Generated from XML file

References

Amri, K., D. Manurung, J.L. Gaol, & M.S. Baskoro. 2013. Karakteristik suhu permukaan laut dan kejadian upwelling fase indian ocean dipole mode positif di barat Sumatera dan selatan Jawa Barat. Jurnal Segara. 9(1): 23-35.

Akhmad, F. 2013. Studi dampak El Nino dan Indian Ocean Dipole (IOD) terhadap curah hujan di Pangkalpinang. Jural Ilmu Lingkungan. 11(1): 43-50. https://doi.org/10.14710/jil.11.1.43-50

Alvarez-Noriega, M., Babcock, R. C., Birrell, C. L., Safaie, A., & Pratchett, M. S. (2023). Tropical reef-building corals, and a great diversity of species dependent on the habitats that corals construct, are threatened by climate change with ocean warming being the dominant cause. Global Change Biology.

Ampou, E. E., Johan, O., Menkes, C. E., Niño, F., Birol, F., & Ouillon, S. (2017). Coral mortality induced by the 2015–2016 El Niño in Indonesia: the effect of rapid sea level fall. Biogeosciences, 14, 817–826. https://doi.org/10.1029/2001GL013294

Ashok, K., Z. Y. Guan, and T. Yamagata. 2001. Impact of the Indian Ocean Dipole on the Relationship between the Indian Monsoon Rainfall and ENSO. Geophys. Res. Lett., 28 (23), 4499-4502. https://doi.org/10.1029/2001GL013294

Cai, W., Santoso, A., Collins, M., Wang, G., Wu, L., & Jin, F.-F. (2019). Emerging responses of the Indian Ocean Dipole under greenhouse warming. Nature.

Dewi, Y. W., Wirasatriya, A., Sugianto, D. N., Helmi, M., Marwoto, J., & Maslukah, L. 2020. Effect of ENSO and IOD on the variability of sea surface temperature (SST) in java sea. In IOP Conference Series: Earth and Environmental Science (Vol. 530, No. 1, p. 012007). IOP Publishing. https://doi.org/10.1088/1755-1315/530/1/012007

Graham, N. A. J., Nash, K. L., & Kool, J. T. (2017). Coral reefs in the Anthropocene. Nature, 546, 82–90. https://doi.org/10.1038/nature22901

Goreau, T. J., & Hayes, R. L. 2009. Effects of rising seawater temperature on coral reefs. Fisheries and Aquaculture-Volume V, 266.

Grottoli, A. G., Hulver, A. M., Thurber, R. V., Toonen, R. J., Schmeltzer, E. R., Kuffner, I. B., ... & Wu, H. C. (2025). Future of coral bleaching research. BioScience, biaf066. Arman, A., N.P. Zamani, dan T. Watanabe. 2013. Studi penentuan umur dan laju pertumbuhan terumbu karang terkait dengan perubahan iklim ekstrim menggunakan sinar-x. Jurnal Ilmiah Aplikasi Isotop dan Radiasi. 9(1):1-10.

Gu, D., & Philander, S.G.H. 1995. Secular changes of annual and interannual variability in the tropics during the past century. Jurnal of Climate. (8):846-876.

Heryati, H., Pranowo, W. S., Purba, N. P., Rizal, A., & Yuliadi, L. P. 2018. Java Sea Surface Temperature Variability during ENSO 1997–1998 and 2014–2015. Omni-Akuatika, 14(1), 96-107. https://doi.org/10.20884/1.oa.2018.14.1.429

Hidayat, R. 2002. Teknik Uji Luaran Model Iklim Area Terbatas Berbasis Analisis Waktu-Frekuensi Wavelet [tesis]. Program Studi Oseonografi & Sains Atmosfer Institut Teknologi Bandung. Bandung.

Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W., & Dove, S. (2017). Coral reef ecosystems under climate change and ocean acidification. Frontiers in Marine Science, 4, 158. https://doi.org/10.3389/fmars.2017.00158

[JAMSTEC] Japan Agency for Marine-Earth Science and Technology. 2008. http://www.jamstec.go.jp/ frcgc/research/d1/iod/DATA/dmi_HadI SST.txt [diakses pada tanggal 15 Agustus 2015]

Koontanakulvong, S. 2008. Impact of Global Climate Change to Monthly Rainfall-Runoff in Thailand and Its Impacts on Water Resources Management in the Eastern Region of Thailand. Faculty of Engineering Chulalongkorn University. Bangkok.

Krisnanto, W. F., Sartimbul, A., Pranowo, W. S., Sari, S. H. J., & Setyawan, F. O. 2024. Experimental Study of The Coupling Between The El Niño Southern Oscillation Index and The Indian Ocean Dipole in Indonesia Utilizing The Oceanic Niño Index and Dipole Mode Index (Case Study: 2009–2020). Jurnal Chart Datum, 10(1), 23-38. https://doi.org/10.37875/chartdatum.v10i1.332

Kusumadewi, S. 2002. Analisa dan Desain Sistem Fuzzy menggunakan Toolbox Matlab. Graha Ilmu. Jakarta.

Kusumadewi, S. & H. Purnomo. 2004. Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Graha Ilmu. Yogyakarta.

Lalang, L., Zamani, N. P., & Arman, A. 2014. Perbedaan laju pertumbuhan karang Porites lutea di Pulau Tunda. Jurnal Teknologi Perikanan dan Kelautan, 5(2), 111-116.

Lenihan, H. S., Hench, J. L., Holbrook, S. J., Schmitt, R. J., & Potoski, M. (2015). Hydrodynamics influence coral performance through simultaneous direct and indirect effects. Ecology, 96(6), 1540–1549. https://doi.org/10.1890/14-1115.1

Meyers, S.D., B.G. Kelly, dan J.J. O’Brien. 1993. An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of yanai waves. Monthly Weather Review. Vol.121 no.10. https://doi.org/10.1175/1520-0493(1993)121%3C2858:AITWAI%3E2.0.CO;2

Mladenov, Philip V. 2020. Marine life in the tropics, Marine Biology: A Very Short Introduction, 2nd edn. Oxford: Oxford Academic. https://doi.org/10.1093/actrade/9780198841715.001.0001

Nugraha, W., A. 2018. Laju pertumbuhan karang porites lutea di Karimunjawa dan Bangkalan, Indonesia. EMBRIO. 5(1): 24-33

Nur’utami, M. N., & Hidayat, R. 2016. Influences of IOD and ENSO to Indonesian rainfall variability: role of atmosphere-ocean interaction in the Indo-Pacific sector. Procedia Environmental Sciences, 33, 196-203. https://doi.org/10.1016/j.proenv.2016.03.070

Perry, C. T., Murphy, G. N., Graham, N. A., Wilson, S. K., Januchowski-Hartley, F. A., & East, H. K. 2015. Remote coral reefs can sustain high growth potential and may match future sea-level trends. Scientific Reports, 5(1), 18289. https://doi.org/10.1038/srep18289

Polonsky, A., dan Torbinsky, A. 2021. The IOD–ENSO interaction: The role of the Indian Ocean current’s system. Atmosphere, 12(12), 1662. https://doi.org/10.3390/atmos12121662

Pratiwi, I. dan Prayitno, E. 2005. Analisis kepuasan konsumen berdasarkan tingkat pelayanan dan harga kamar menggunakan aplikasi fuzzy dengan matlab 3.5. Jurnal Ilmiah Teknik Industri. 4(2):66-77.

Rani, C, J. Jamaluddin, & Amiruddin. 2004. Pertumbuhan Tahunan Karang Keras Porites Lutea Di Kepulauan Spermonde: Hubungannya Dengan Suhu Dan Curah Hujan. Torani, 14(4), 195 203.

Rao, S. A., Behera, S. K., Masumoto, Y., & Yamagata, T. 2002. Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep Sea Research Part II: Topical Studies in Oceanography, 49(7-8), 1549-1572. https://doi.org/10.1016/S0967-0645(01)00158-8

Riska, Zamani, N. P., Prartono, T., & Arman, A. 2015. Plumbum (Pb) Concentration in Annual Bands of Coral Porites Lutea at Tunda Island, Banten. Jurnal Ilmu dan Teknologi Kelautan Tropis, 7(1). https://doi.org/10.28930/jitkt.v7i1.9809

Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & T. Yamagata. 1999. A dipole mode in the tropical Indian Ocean, Nature, 401, 360-363, 1999. https://doi.org/10.1038/43854

Sutojo T, Mulyanto E, & Suhartono V. 2011. Kecerdasan Buatan. Andi Offset. Yogyakarta.

Tito, C. K., A. Jusach, J. Jenhar, M. Wasis, & A. Rohman. 2013. Kajian SST, Presipitasi, dan Salinitas Kaitannya dengan Laju Pertumbuhan Karang Porites di Nusa Penida, Bali. Seminar Nasional Perikanan dan Kelautan, V, 499 – 503.

Tito, C. K., Setiawan, A., Cahyarini, S. Y., & Indriyawan, M. W. 2016. Growth rates analysis of Porites corals from Nusa Penida, Bali. Journal of Mathematical and Fundamental Sciences, 48(1), 12–24. https://doi.org/10.5614/j.math.fund.sci.2016.48.1.2

Torrence, C. & G.P. Compo. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorogical Society. 79(1):61-78. https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2

Vinayachandran, P. N., Satoshi L., & Toshio, Y. 2001. Indian Ocean Dipole Mode Events in an Ocean. General Circulation Model. Deep-sea Research II. 49 2002 1573-1596. https://doi.org/10.1016/S0967-0645(01)00157-6

Virgen-Urcelay A., & Donner S. D. 2023. Increase in the extent of mass coral bleaching over the past half-century, based on an updated global database. PLoS ONE 18(2): e0281719. https://doi.org/10.1371/journal.pone.0281719

Westmacott, S., K. Teleki, S. Wells, & J. West. 2000. Pengelolaan Terumbu Karang yang Telah Memutih dan Rusak. IUCN. Switzerland and Cambridge.

Yager, R., & Kacprzyk, J. (Eds.) (2018). The Wiley Handbook of Fuzzy and Neutrosophic Analysis. Wiley.

Zamani, N. P., & Arman, A. 2016. The growth rate of coral Porites lutea relating to the El Niño phenomena at Tunda Island, Banten Bay, Indonesia. Procedia Environmental Sciences, 33, 505-511. https://doi.org/10.1016/j.proenv.2016.03.103

Zhang, Y., Zhou, W., Wang, X., Chen, S., Chen, J., & Li, S. 2022. Indian Ocean Dipole and ENSO’s mechanistic importance in modulating the ensuing-summer precipitation over Eastern China. Climate and Atmospheric Science, 5(1), 48. https://doi.org/10.1038/s41612-022-00271-5

Zhu, W., Ren, Y., Liu, X., Huang, D., Xia, J., Zhu, M., ... & Li, X. 2022. The impact of coastal upwelling on coral reef ecosystem under anthropogenic influence: coral reef community and its response to environmental factors. Frontiers in Marine Science, 9, 888888. https://doi.org/10.3389/fmars.2022.888888

Authors

Muhamad Kemal Idris
idriskemal1@gmail.com (Primary Contact)
Alan Frendy Koropitan
Neviaty P Zamani
Hard Coral (Porites Lutea) Growth Simulation using Fuzzy Logic Method in Tunda Waters, Banten Province. (2025). Jurnal Ilmu Dan Teknologi Kelautan Tropis, 17(2), 469-482. https://doi.org/10.29244/jitkt.v17i2.63475

Article Details

How to Cite

Hard Coral (Porites Lutea) Growth Simulation using Fuzzy Logic Method in Tunda Waters, Banten Province. (2025). Jurnal Ilmu Dan Teknologi Kelautan Tropis, 17(2), 469-482. https://doi.org/10.29244/jitkt.v17i2.63475
No Related Submission Found