Heavy Metal Absorption in Lasolo Bay using a Composite of Cashew-Based Activated Charcoal and Iron Sand, Southeast Sulawesi, Indonesia

Rosliana Eso(1) , Irawati(2) , Bahdat(3) , Asmadin(4) , Arman(5) , Syahdin Alfat(6) , Erzam S Hasan(7)
(1) Department of Geophysics Engineering, Mathematics and Science Faculty, Halu Oleo University, Kendari, 93231, Indonesia,
(2) Department of Oceanography, Mathematics and Science Faculty, Halu Oleo University, Kendari, 93231, Indonesia Kendari, 93231, Indonesia ,
(3) Department of Oceanography, Mathematics and Science Faculty, Halu Oleo University, Kendari, 93231, Indonesia Kendari, 93231, Indonesia ,
(4) Department of Oceanography, Mathematics and Science Faculty, Halu Oleo University, Kendari, 93231, Indonesia Kendari, 93231, Indonesia ,
(5) Department of Mathematics, Mathematics and Science Faculty, Halu Oleo University, Kendari, 93231, Indonesia,
(6) Department of Physics Education, Teacher Training and Science Education Faculty, Halu Oleo University, Kendari, 93231, Indonesia,
(7) Department of Geophysics Engineering, Mathematics and Science Faculty, Halu Oleo University, Kendari, 93231, Indonesia

Abstract

This study used a composite of activated charcoal and iron sand extract to reduce the concentrations of heavy metals (Cu, Ni, Zn, Pb, and Cd) in polluted seawater. The grain size of the composite was varied to 60 mesh, 100 mesh, and 200 mesh, with a ratio of activated charcoal to iron sand of 2:3 to optimize absorption. The composite was then compacted into pellets with compaction pressures of 42.2 Pa, 84.8 Pa, and 141.5 Pa, respectively, to achieve optimum compressive strength. The concentrations of heavy metals were measured using an Atomic Absorption Spectrophotometer (AAS). The optimal compaction pressure for the composite was found to be 141.5 Pa, with absorption efficiencies of 61% for Zn, 96% for Pb, 48% for Cd, 90% for Cu, and 94% for Ni. According to the research results, the highest absorption was obtained in composites with a grain size of 200 mesh, with absorption efficiencies of 62.21% for Zn, 96.87% for Pb, 48.14% for Cd, 90.98% for Cu, and 94.15% for Ni. The greater the compaction pressure exerted on the composite, the higher the absorption percentage of the composite pellets. Conversely, a finer grain size also contributes to higher absorption.

Full text article

Generated from XML file

References

Adetunji, O. R., Adedayo, A. M., Ismailia, S. O., & Dairo, O. U. (2022). Effect of silica on the mechanical properties of palm kernel shell based automotive brake pad. Mechanical Engineering for Society and Industry, 2(1), 7–16. https://doi.org/10.31603/mesi.6178

Ahmad, F. (2013). Dampak aktivitas perkotaan dan penambangan nikel terhadap tingkat kontaminasi logam berat dalam air laut dan sedimen. Indonesian Journal of Marine Sciences, 18(2), 71–78.

Alimah, D. (2021). Characterization of activated charcoal microstructure porosity of cashewnut shell (Anacardium occidentale L.). Jurnal Galam, 2(1), 16-28. https://doi.org/10.20886/glm.2021.2.1.16-28

Anugraha, V. G., & Widyastuti. (2014). Pengaruh komposisi Sn dan variasi tekanan kompaksi terhadap densitas dan kekerasan komposit Cu-Sn untuk aplikasi proyektil peluru frangible dengan metode metalurgi serbuk. Jurnal Teknik Pomits, 3(1), 102–107.

Bakhri, S., Mahdang, A. F., & Kaseng, A. A. (2021). Pembuatan hand soap dengan proses saponifikasi dengan pemurnian minyak jelantah menggunakan arang aktif. Jurnal Teknologi Pangan dan Hasil Pertanian, 16(2), 44. https://doi.org/10.26623/jtphp.v16i2.4549

Baloo, L., Hasnain, M., Bin, N., Hussaini, A., Jun, L., Yavari, S., & Razali, R. (2021). Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alexandria Engineering Journal, 60(6), 5611–5629. https://doi.org/10.1016/j.aej.2021.04.044

Bergna, D., Hu, T., Prokkola, H., Romar, H., & Lassi, U. (2020). Effect of some process parameters on the main properties of activated carbon produced from peat in a lab-scale process. Waste and Biomass Valorization, 11(6), 2837–2848. https://doi.org/10.1007/s12649-019-00584-2

Chen, X., Li, F., & Gupta, S. K. (2022). Pressure-dependent brittle-ductile transition in compacted adsorbents: Implications for hydraulic permeability. Chemical Engineering Journal, 428, 131015. https://doi.org/10.1016/j.cej.2021.131015

Chimi, T., Hannah, B. U., Lincold, N. M., Jacques, M. B., Tome, S., Hermann, D. T., Shikuku, V. O., Nouga, A., Gerard, B., Tchieta, P., & Eya, F. (2022). Preparation, characterization and application of H₃PO₄ activated carbon from Pentaclethra macrophylla pods for the removal of Cr(VI) in aqueous medium. Journal of the Iranian Chemical Society. https://doi.org/10.1007/s13738-022-02675-9

Desi, Suharman, A., & Vinsiah, R. (2015). Pengaruh variasi suhu karbonisasi terhadap daya serap karbon aktif cangkang kulit buah karet (Hevea brasilliensis). Prosiding SEMIRATA, 294–303.

Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

Gunanto, Y. E., Izaak, M. P., Jobiliong, E., Cahyadi, L., & Adi, W. A. (2018). High purity Fe₃O₄ and α-Fe₂O₃ from local iron sand extraction. Journal of Physics: Conference Series, 1091(1), 012021. https://doi.org/10.1088/1742-6596/1091/1/012021

Handayani, T., & Fauzan, A. (2021). Softening hard water using cocoa shell activated charcoal. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 10(2), 143–149. https://doi.org/10.22487/j24775185.2021.v10.i2.pp143-149

Hemavathi, S., Kousalyadevi, G., Thiru, S., & Aravindan, A. (2023). Utilization of brown seaweed adsorbent for effective removal of Pb (II) from wastewater: Biosorption and column studies. Environmental Research and Technology, 25(7), 61–69.

Hoang, A. T., Kumar, S., Lichtfouse, E., Cheng, C. K., Varma, R. S., Senthilkumar, N., Nguyen, P. Q. P., & Nguyen, X. P. (2022). Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Chemosphere, 302, 134825. https://doi.org/10.1016/j.chemosphere.2022.134825

Huang, K., Xiu, Y., & Zhu, H. (2013). Selective removal of Cr (VI) from aqueous solution by adsorption on mangosteen peel. Environmental Science and Pollution Research, 20, 5930–5938. https://doi.org/10.1007/s11356-013-1497-0

Hussaini Jagaba, A., Abubakar, S., Abdu Nasara, M., Muhammad Jagaba, S., Mohammed Chamah, H., & Mohammed Lawal, I. (2019). Defluoridation of drinking water by activated carbon prepared from Tridax procumbens plant (A case study of Gashaka Village, Hong L.G.A., Adamawa State, Nigeria). International Journal of Computational and Theoretical Chemistry, 7(1). https://doi.org/10.11648/j.ijctc.20190701.11

Irawati, La Sara, M., & A. (2022). Spatial distribution of phytoplankton in Lasolo Bay of Southeast Sulawesi Province, Indonesia. Journal of Applied Biology and Environmental Technology, 2022. https://doi.org/10.5455/jabet.2022.d140

Karasakal, A., & Talib, N. (2022). Cadmium ions removal analysis from wastewater utilizing Salvadora persica stem’s activated carbon. Water and Environmental Sustainability, 2(2), 1–5. https://doi.org/10.52293/WES.2.2.15

Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113–120. https://doi.org/10.1016/j.egypro.2014.06.014

Kumar, P. S., Ramalingam, S., & Sathishkumar, K. (2011). Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean Journal of Chemical Engineering, 28(1), 149–155. https://doi.org/10.1007/s11814-010-0342-0

Kurniawan, T. A., Chan, G. Y. S., & Lo, W. H. (2012). Removal of heavy metals from contaminated water using iron oxide composites: A comparative study. Journal of Environmental Management, 111, 1–8. https://doi.org/10.1016/j.jenvman.2012.06.027

Mashuri, M., Usman, A. A., & Suyatno, S. (2023). Reduced graphene oxide-ferrite microcomposites based on petung bamboo (Dendrocalamus asper) charcoal and iron sand as lightweight microwave absorbing materials. Materials Research Express, 10(1). https://doi.org/10.1088/2053-1591/acb1a3

Mashuri, X., Lestari, W., Triwikantoro, X., & Darminto, X. (2018). Preparation and microwave absorbing properties in the X-band of natural ferrites from iron sands by high energy milling. Materials Research Express, 5(1), 3–8. https://doi.org/10.1088/2053-1591/aa68b4

Mohan, D., Singh, K. P., & Singh, V. K. (2006). Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Journal of Hazardous Materials, 135, 280–295. https://doi.org/10.1016/j.jhazmat.2005.11.075

Quan, X., Wang, S., Liu, K., Xu, J., Zhang, K., Zhao, N., & Li, B. (2022). Influence of iron ore tailings by-product on the mechanical and electrical properties of carbon fiber reinforced cement-based composites. Journal of Building Engineering, 45, 103567. https://doi.org/10.1016/j.jobe.2021.103567

Rettob, A. L. (2019). Characterization of iron sand magnetic materials coated with 2-aminobenzimidazole modified silica. International Journal of Mechanical Engineering and Technology, 10(2), 620–627.

Rianna, M., Sembiring, T., Situmorang, M., Kurniawan, C., Setiadi, E. A., Tetuko, A. P., Simbolon, S., Ginting, M., & Sebayang, P. (2018). Preparation and characterization of natural iron sand from Kata Beach, Sumatera Barat Indonesia with high energy milling (HEM). Jurnal Natural, 18(2), 97–100. https://doi.org/10.24815/jn.v18i2.11163

Saenab, A., Wiryawan, K. G., R., Y., & Wina, E. (2016). Karakteristik fisik dan kimia dari produk bioindustri cangkang jambu mete (Anacardium occidentale). Jurnal Penelitian Tanaman Industri, 22(2), 81–90. https://doi.org/10.21082/littri.v22n2.2016.81-90

Safitri, I., Wibowo, Y. G., Rosarina, D., & Sudibyo. (2021). Synthesis and characterization of magnetite (Fe₃O₄) nanoparticles from iron sand in Batanghari Beach. IOP Conference Series: Materials Science and Engineering, 1011(1). https://doi.org/10.1088/1757-899X/1011/1/012020

Sahlabji, T., El-nemr, M. A., Nemr, A. El, Ragab, S., Alghamdi, M., El-zahhar, A. A., Idris, A. M., & Said, T. O. (2022). High surface area microporous activated carbon from Pisum sativum peels for hexavalent chromium removal from aquatic environment. Toxin Reviews, 41(2), 639–649. https://doi.org/10.1080/15569543.2021.1908361

Sembiring, M. T., & Sinaga, T. S. (2003). Arang aktif (Pengenalan dan proses pembuatannya). USU Digital Library, 1–9.

Tangjuank, S., Insuk, N., Tontrakoon, J., & Udeye, V. (2009). Adsorption of lead (II) and cadmium (II) ions from aqueous solutions by adsorption on activated carbon prepared from cashew nut shells. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 3(4), 221–227.

Wahab, A., et al. (2023). Influence of particle size and pH variation on lead (Pb) and zinc (Zn) adsorption using activated carbon from cashew nut waste. Journal of Physics: Conference Series.

Zhang, L., Wang, T., & Liu, Y. (2023). Compaction-induced pore evolution in mineral adsorbents for heavy metal sequestration. Journal of Hazardous Materials, 445, 130412. https://doi.org/10.1016/j.jhazmat.2022.130412

Authors

Rosliana Eso
rosliana.eso@uho.ac.id (Primary Contact)
Irawati
Bahdat
Asmadin
Arman
Syahdin Alfat
Erzam S Hasan
Heavy Metal Absorption in Lasolo Bay using a Composite of Cashew-Based Activated Charcoal and Iron Sand, Southeast Sulawesi, Indonesia. (2025). Jurnal Ilmu Dan Teknologi Kelautan Tropis, 17(2), 441-450. https://doi.org/10.29244/jitkt.v17i2.63332

Article Details

How to Cite

Heavy Metal Absorption in Lasolo Bay using a Composite of Cashew-Based Activated Charcoal and Iron Sand, Southeast Sulawesi, Indonesia. (2025). Jurnal Ilmu Dan Teknologi Kelautan Tropis, 17(2), 441-450. https://doi.org/10.29244/jitkt.v17i2.63332
No Related Submission Found