Phytochemicals and Lipase Inhibition of Citronella, Galangal, and Sand Galangal: In Vitro–In Silico Approaches
Abstract
Obesity is a major global health concern, often treated by inhibiting pancreatic lipase to reduce fat absorption. While chemical-based medicine is a widely used synthetic inhibitor, its side effects highlight the need for safer, natural alternatives. This study aimed to characterize the total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity, and pancreatic lipase inhibition of citronella leaf (Cymbopogon nardus), galangal rhizome (Alpinia galanga), and sand galangal rhizome (Kaempferia galanga) through in vitro and in silico analyses and to identify the potential phytochemical compounds responsible for the activity. Citronella showed the highest TPC, TFC, and FRAP values (14.20±0.21 mg GAE/g, 17.36±9.51 mg QE/g, and 92.01±1.88 µmol TE/g, respectively), indicating strong antioxidant potential. Galangal exhibited the highest extraction yield (21.86±5.34%) and DPPH activity (1.09±0.27 µmol TE/g). In vitro lipase inhibition assays revealed galangal and sand galangal had moderate inhibitory effects (IC50= 401.2±18.24 and 374±11.24 µg/mL), while citronella showed weak activity. LC-MS/MS analysis of galangal identified eight compounds, including galangin, eugenol, and galanganol C. Molecular docking showed galangin had the strongest binding affinity (ΔG= -10.239 kcal/mol), interacting with catalytic residues Ser152 and His263 of pancreatic lipase via hydrophobic and electrostatic interactions. These findings suggest that citronella, galangal, and sand galangal possess potential as natural pancreatic lipase inhibitors, with galangal particularly galangin showing the most promising activity for obesity prevention and management.
Full text article
References
Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., Ugwuja, E. I., & Aja, P. M. (2023). Molecular docking as tool for discovery of molecular targets of neutraceuticals in disease management. Scientific Reports, 13, 13398. https://doi.org/10.1038/s41598-023-40160-2
Ahwan, Suwarni, A., Ariastuti, R., Hafidz, R., & Enjelina, S. M. (2024). Effect of total phenolic and total flavonoid levels on the antioxidant power of water extract, ethanol and chloroform of green tea leaves (Camellia sinensis L.). Medical Sains: Jurnal Ilmiah Kefarmasian, 9(1), 17−28. https://doi.org/10.37874/ms.v9i1.940
Aljobair, M. O. (2022). Chemical composition, antimicrobial properties, and antioxidant activity of galangal rhizome. Food Science and Technology, 42, e45622. https://doi.org/10.1590/fst.45622
Andarina, R., & Djauhari, T. (2017). Antioksidan dalam dermatologi. Jurnal Kedokteran dan Kesehatan, 4(1), 39−48.
Aykul, S., & Martinez-Hackert, E. (2016). Determination of half-maximal inhibitory concentrations using biosensor-based protein interactions analysis. Analytical Biochemistry, 508, 97−103. https://doi.org/10.1016/j.ab.2016.06.025
Batubara, I., Darusman, L. K., Mitsunaga, T., Rahminiwati, M., & Djauhari, E. (2010). Potency of Indonesian medical plants as tyrosinase inhibitor and antioxidant agent. Journal of Biological Sciences, 10(2), 138−144. https://doi.org/10.3923/jbs.2010.138.144
Batubara, I., Suparto, I. H., Sa’diah S., Matsuoka, R., & Mitsunaga T. (2015). Effect of inhaled citronella oil and related compounds on rat body weight and brown adipose tissues sympathetic nerve. Nutrients, 7(3), 1859−1870. https://doi.org/10.3390/nu7031859
Benzie, I. F. F., & Strain, J. J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15−27. https://doi.org/10.1016/S0076-6879(99)99005-5
Carrera-Julia, S., Moreno, M. L., Barrios, C., de la Rubia Orti, J. E., & Drehmer, E. (2020). Antioxidant alternatives in the treatment of amyotrophic lateral sclerosis: A comprehensive review. Frontiers in Physiology, 11, 63. https://doi.org/10.3389/fphys.2020.00063
Chedda, U., Kaikini, A., Bagle, S., Seervi, M., & Sathaye, S. (2016). In vitro pancreatic lipase inhibition potential of commonly used Indian species. IOSR Journal of Pharmacy, 6(10), 10−13.
Das, G., Patra, J. K., Gonçalves, S., Romano, A., Gutiérrez-Grijalva, E. P., Heredia, J. B., Talukdar, A. D., Shome, S., & Shin, H. S. (2020) Galangal, the multipotent super spices: A comprehensive review. Trends in Food Science & Technology, 101, 50−62. https://doi.org/10.1016/j.tifs.2020.04.032
Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Review insight into protein-ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144
Egloff, M. P., Marguet, F., Buono, G., Verger, R., Cambillau, C., & van Tilbeurgh, H. (1995). The 2.46 Å resolution structure of pancreatic lipase−colipase complex inhibited by C11 Alkyl phosphonate. Biochemistry, 34(9), 2751−2762. https://doi.org/10.1021/bi00009a003
Filograna, R., Beltramini, M., Bubacco, L., & Bisaglia, M. (2016). Antioxidants in Parkinson’s disease therapy: A critical point of view. Current Neuropharmacology, 14(3), 260−271. https://doi.org/10.2174/1570159X13666151030102718
Gómez-Apo, E., Mondragón-Maya, A., Ferrari-Díaz, M., & Silva-Pereyra, J. (2021). Structural brain changes associated with overweight and obesity. Journal of Obesity, 2021(1), 6613385. https://doi.org/10.1155/2021/6613385
Gulcin, I., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248
Haerani, A., Chaerunisa, A. Y., & Subarnas, A. (2018). Artikel tinjauan: Antioksidan untuk kulit. Farmaka, 16(2), 135−151
Handayani, S., Fita, F. E., Istatoah, S., Indah, E., & Arifin, I. (2015). Potensi rimpang kencur (Kaempferia galangal L.) sebagai pencegah osteoporosis dan penurun kolesterol melalui studi in-vivo dan in-silico. Prosiding Seminar Nasional Peluang Herbal Sebagai Alternatif Medicine, 2−8.
Harmita, K., Harahap, Y., & Supandi. (2019). Liquid Chromatography−Tandem Mass Spectrometry (LC−MS/MS). PT. ISFI Penerbitan, Jakarta.
Hasim, H., Faridah, D. N., Qomaliyah, E. K., & Afandi, F. A. (2023). Pancreatic lipase inhibition activity in lipid absorption using traditional plants: A systematic review and meta-analysis. Indonesian Journal of Chemistry, 23(3), 568−582. https://doi.org/10.22146/ijc.76873
Hidayati, D. A., Prajitno, A., Sulistyawati, T. D., Pratama, G., & Nilakandhi, T. (2023). Antibacterial activity of red galangal (A. purpurata) extract on growth of E. tarda bacteria. Journal of Aquaculture and Fish Health, 12(1), 127−134. https://doi.org/10.20473/jafh.v12i1.37056
Hussain, M. M. (2014). Intestinal lipid absorption lipoprotein fomation. Current Opinion in Lipidology, 25(3), 200−206. https://doi.org/10.1097/MOL.0000000000000084
Iswantini, D., Darusman, L. K., & Fitriyani, A. (2010). Uji in vitro ekstrak air dan etanol dari buah asam gelugur, rimpang lengkuas, dan kencur sebagai inhibitor aktivitas lipase pankreas. Jurnal Sains dan Teknologi Indonesia, 12(1), 15−20.
Jung, C. H., Jang, S. J., Ahn, J., Gwon, S. Y., Jeon, T. I., Kim, T. W., & Ha, T. Y. (2012). Alpinia officinarum inhibits adipocyte differentiation and high-fat diet-induced obesity in mice through regulation of adipogenesis and lipogenesis. Journal of Medicinal Food, 15(11), 959−967. https://doi.org/10.1089/jmf.2012.2286
Kaur, H., Bhardwaj, U., & Kaur, R. (2021). Cymbopogon nardus essential oil: A comprehensive review on its chemistry and bioactivity. Journal of Essential Oil Research, 33(3), 205−220. https://doi.org/10.1080/10412905.2021.1871976
[Kemenkes] Kementrian Kesehatan Republik Indonesia. (2019). Laporan Nasional Riskesdas 2018. Lembaga Penerbitan Badan Penelitian dan Pengembangan Kesehatan, Jakarta.
Khairullah, A. R., Solikhah, T. I., Ansori, A. N. M., Fadholly, A., Ramadinianto, S. C., Ansharieta, R., Widodo, A., Riwu, K. H. P., Putri, N., Proboningrat, A., Kusala, M. K. J., Rendragraha, B. W., Putra, A. R. S., & Anshori, A. (2020). A review of an important medical plant: Alpinia galanga (L.) Willd. Systematic Reviews in Pharmacy, 11(10), 387−395. https://doi.org/10.31838/srp.2020.10.62
Kiptiyah, M., Rahmatullah, S., Wirasti, W., & Waznah, U. (2021). Evaluasi penggunaan pati ganyong (Canna edulis Kerr.) sebagai bahan pengikat pada tablet kunyah ekstrak etanol daun kelor (Moringa oleifera L) dengan metode granulasi basah. Prosiding Seminar Nasional Kesehatan, 1, 2188–2206. https://doi.org/10.48144/prosiding.v1i.1039
Kotha, R. R., Tareq, F. S., Yildiz, E., & Luthria, D. L. (2022). Oxidative stress and antioxidants−a critical review on in vitro antioxidant assays. Antioxidants, 11(12), 2388. https://doi.org/10.3390/antiox11122388
Kousar, M. U., Jabeen, A., Fatima, T., Hussain, S. Z., Zargar, I. A., Amin, T., & Yaseen, M. (2023). Optimization of ultrasonic-assisted extraction of eugenol-rich fraction from basil leaves: Characterization of extract for phenols, flavonoids, and antioxidant activity. Food Chemistry Advances, 3, 100374. https://doi.org/10.1016/j.focha.2023.100374
Kumar, A., & Chauchan, S. (2021). Pancreatic lipase inhibitors: The road voyaged and successes. Life Sciences, 271, 119115. https://doi.org/10.1016/j.lfs.2021.119115
Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-product: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325
Kumar, S., & Alagawadi, K. R. (2013). Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats, 51(5), 607−613. https://doi.org/10.3109/13880209.2012.757327
Lai-Cheong, J. E., & McGrath, J. A. (2021). Structure and function of skin, hair and nails. Medicine, 49(6), 337−342. https://doi.org/10.1016/j.mpmed.2021.03.001
Lankatillake, C., Luo, S, Flavel, M., Lenon, G. B., Gill, H., Huynh, T, & Dias, D. A. (2021). Screening natural product extracts for potential enzyme inhibitors: protocols, and the standardisation of usage of blanks in α-amylase, α-glucosidase and lipase assays. Plants Methods, 17(3), 2021. https://doi.org/10.1186/s13007-020-00702-5
Liu, T. T., Liu, X. T., Chen, Q. X., & Shi, Y. (2020). Lipase inhibitors for obesity: A review. Biomedicine & Pharmacotherapy, 128, 110314. https://doi.org/10.1016/j.biopha.2020.110314
Manse, Y., Ninomiya, K., Nishi, R., Kamei, I., Katsuyama, Y., Imagawa, T., Chaipech, S., Muraoka, O., & Morikawa, T. (2016). Melanogenesis inhibitor activity of a 7-O-9’-linked neolignan from Alpinia galanga fruit. Bioorganic & Medicinal Chemistry, 24(23), 6215−6224. https://doi.org/10.1016/j.bmc.2016.10.001
Marlini, N., Arika, I. M., Rafi, M., Syukur, M., Galinging, R. Y., & Nurcholis, W. (2022). Phenolic and flavonoid content with agro morphological characters of 12 accessions of Justica gendarussa grew in Indonesia. Biodiversitas, 23(10), 5101−5107. https://doi.org/10.13057/biodiv/d231017
Mishra, S. C., & Sharma, N. (2021). Qualitative and quantitative study of phytoconstituents and antioxidant potential of rhizomes of Kaempferia galanga, Kaempferia parviflora and Kampferia pulchra. Journal of Pharmaceutical Research International, 33(56A), 150−159. https://doi.org/10.9734/jpri/2021/v33i56A33897
Mlynarska, E., Hajdys, J., Czarnik, W., Fularski, P., Leszto, K., Majchrowicz, G., Lisinska, W., Rysz, J., & Franczyk, B. (2024). The role of antioxidants in therapy of cardiovascular diseases−a literature review. Nutrients, 16(6), 2587. https://doi.org/10.3390/nu16162587
Morikawa, T., Ando, S., Matsuda, H., Kataoka, S., Muraoka O., & Yoshikawa, M. (2005). Inhibitors of nitric oxide production from the rhizomes of Alpinia galanga: structure of new 8−9’ linked neolignans and sesquineolignan. Chemical and Pharmaceutical Bulletin, 53(6), 625−630. https://doi.org/10.1248/cpb.53.625
Morita, H., & Itokawa, H. (1998). Cytotoxic and antifungal diterpenes from seeds of Alpinia galanga. Plant Medica, 54(2), 117−120. https://doi.org/10.1055/s-2006-962365
Mudianta, I. W., Siregar, J. E., Rizki, A. F. M., Azmi, W. A., Pravitasari, N. E., Gholam, G. M., Putri, F. R., Kristiana, R., Cahyani, N. K. D., & Artika, I. M. (2024). Expanding the occurrence of antimalarial metabolites in dorid nudibranch Hypselodoris tryoni. Biochemical and Biophysical Research Communications, 737, 150921. https://doi.org/10.1016/j.bbrc.2024.150921
Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Science, 22(7), 3380. https://doi.org/10.3390/ijms22073380
Perez, M., Dominguez-Lopez, I., & Lamuela-Raventós, R. M. (2023). The chemistry behind the folin-ciocalteu method for the estimation of (poly)phenol content in food: Total phenolic intake in a mediterranean dietary pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543−17553. https://doi.org/10.1021/acs.jafc.3c04022
Pliego, J., Mateos, J. C., Rodriguez, J., Valero, F., Baeza, M., Fermat, R., Camacho, R., Sandoval, G., & Herrera-López, E. J. (2015). Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p−nitrophenyl butyrate. Sensors, 15(2), 2798−2811. https://doi.org/10.3390/s150202798
Qi, X. (2018). Review of the clinical effect of orlistat. IOP Conference Series: Materials Science and Engineering, 301, 1−9. https://doi.org/10.1088/1757-899X/301/1/012063
Rajan, L., Radhakrishnan, A., Selleppan, G., & Mohankumar, S. K. (2021). Susceptible genetic polymorphisms and their association with adverse effects of orlistat therapy. Obesity Medicine, 25, 100360. https://doi.org/10.1016/j.obmed.2021.100360
Rocha, S., Rufino, A. T., Freitas, M., Silva, A. M. S., Carvalho, F., & Fernandes, E. (2023). Methodologies for assessing pancreatic lipase catalytic activity: A review. Critical Reviews in Analytical Chemistry, 54(8), 3038−3065. https://doi.org/10.1080/10408347.2023.2221731
Salazar-Aranda, R., Pérez−López, L. A., López-Arroyo, J., Alanís-Garza, B. A, & de Torres, N. W. (2011). Antimicrobial and antioxidant activities of plants from Northeast of Mexico. Evidence-Based Complementary and Alternative Medicine, 2011(1), 536139. https://doi.org/10.1093/ecam/nep127
Sankara, A., Quédraogo, J. C. W., Zerbo, M., Ouattara, B., & Bonzi-Coulibaly, Y. L. (2024). Phytochemical profile and antibacterial activity of solid residues from hydrodistillation of Cymbopogon nardus from Burkina Faso. Chemical Science International Journal, 33(6), 114−124. https://doi.org/10.9734/CSJI/2024/v33i6930
Sayuti, K., & Yenrina, R. (2015). Antioksidan alami dan sintetik. Andalas University Press, Padang.
Sekhon-Loodu, S., Warnakulasuriya, S. N., Rupasinghe, H. P. V., & Shahidi, F. (2021). Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation. Food Chemistry, 140(1−2), 189−196. https://doi.org/10.1016/j.foodchem.2013.02.040
Setyowati, E., Nisa, N. F. H., Nasriyah, & Nilawati. (2025). Physical stability test of liquid facial soap formulation of citronella extract (Cymbopogon nardus L.). Jurnal Ilmiah Farmasi (Scientific Journal of Pharmacy), 21(1), 1−10.
Shin, J. E., Han, M. J., & Kim, D. H. (2003). 3-metylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase. Biological and Pharmaceutical Bulletin, 26(6), 854−857. https://doi.org/10.1248/bpb.26.854
Sinyor, B., Mineo, J., & Ochner, C. (2020). Alzheimer’s disease, inflammation, and the role of antioxidants. Journal of Alzheimer’s Disease Reports, 4(1), 175−183. https://doi.org/10.3233/ADR-200171
Souza, S. P., Pereira, L. L. S., Souza, A. A., & Santos, C. D. (2012). Seleção de extratos brutos de plantas com atividade antiobesidade. Revista Brasileira de Plantas Medicinais, 14(4), 643−648. https://doi.org/10.1590/S1516-05722012000400011
Subaryanti, S., Triadiati, T. Sulistiyaningsih, Y. C., & Iswantini, D. (2022). Total phenol content of accessions of kencur (Kaempferia galangal L.) at different altitudes. Natural Science: Journal of Science and Technology, 11(1), 1−6.
https://doi.org/10.22487/25411969.2022.v11.i01.15696
Syahbanu, F., Giriwono, P. E., Tjandrawinata, R. R., & Suhartono, M. T. (2021). Molecular docking of Subtilisin K2, a fibrin-degrading enzyme from Indonesian moromi, with its substrates. Food Science Technology, 42, 1−8. https://doi.org/10.1590/fst.61820
Widiastuti, D., Sinaga, S. E., Warnasih, S., Pujiyawati, E., Salam, S., & Putra, W. E. (2023). Identification of active compounds from Averrhoa bilimbi L. (belimbing wuluh) flower using LC-MS and antidiabetic activity test using in vitro and in silico approaches. Trends in Sciences, 20(8), 6761. https://doi.org/10.48048/tis.2023.6761
Wijaya, A., & Noviana. (2022). Penetapan kadar air simplisia daun kemangi (Ocimum basilicum L.) berdasarkan perbedaan metode pengeringan. Jurnal Riset Kefarmasian Indonesia, 4(2), 185−194.
Winarsih, S., Mulyati, A. H., Widiastuti, D., Zahra, A. C., Sugita, P., Ambarsari, L., Dianhar, H., & Rahayu, D. U. C. (2024). Anticancer potency of methanol extract from Terminalia catappa leaves using in vitro and in silico methods. Trends in Sciences, 21(9), 8057. https://doi.org/10.48048/tis.2024.8057
[WOF] Word Obesity Federation. (2024). World Obesity Atlas 2023.
Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60−69. https://doi.org/10.1002/fft2.10
Xu, D. P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J. J., & Li, H. B. (2017). Natural antioxidants in food and medical plants: Extraction, assessment and resources. International Journal of Molecular Sciences, 18(1), 96. https://doi.org/10.3390/ijms18010096
Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394. https://doi.org/10.1111/jfbc.13394
Authors
Copyright (c) 2025 Diya Aghnia, Hasim Hasim, Laksmi Ambarsari, Didah Nur Faridah, Fitria Slameut, Rizky Putra Kandi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.