Physicochemical and Sensory Properties of Plant-Based Milk Alternative Produced from Pigeon Pea and Soybean

Jeallyza Muthia Azra(1) , Reisi Nurdiani(2) , Zuraidah Nasution(3) , Muhammad Aries(4) , Ni Ketut Sutiari(5)
(1) Department of Nutrition, Faculty of Public Health, Universitas Andalas, Padang, Indonesia,
(2) Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia,
(3) Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia,
(4) Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia,
(5) Department of Public Health and Preventive Medicine, Medical Faculty, Udayana University, Denpasar, Indonesia

Abstract

The popularity of plant-based milk alternatives (PBMA) has been growing due to environmental concerns and health benefits. This study aimed to develop and evaluate a novel PBMA formulation combining pigeon pea and soybean at three different ratios (40:60, 50:50, and 60:40), focusing on their physicochemical characteristics, sensory properties, and antioxidant activity. In this study, significant differences (p<0.05) were found in the physicochemical properties of the samples, while sensory acceptability showed no significant differences (p>0.05). Increasing the proportion of pigeon pea resulted in a lower level of ash, protein, fat, color, viscosity, and pH, while the content of moisture, carbohydrate, and soluble solids increased. The formulations contained 91.84‒92.39% moisture; 0.09‒0.12% ash; 0.80‒1.48% protein; 0.81‒1.04% crude fat; and 5.52‒5.91% carbohydrate. Additionally, they had lightness values of 59.74‒68.57; greenness/redness values of -0.53‒0.68; yellowness values of 6.60‒8.13; viscosities of 11.42‒12.50 cP; soluble solids of 6.00‒9.00 °Brix; and pH of 6.69‒6.72. The sensory evaluation ranged from “neither like nor dislike” to “slightly like” (5.24–5.97 on a 9-point scale), indicating moderate acceptability across all formulations. Despite being acknowledged as having a beany aroma, the panelists identified sweet and creamy notes with low bitterness in the sample, contributing to a relatively pleasant flavor. Furthermore, the 50:50 pigeon pea-to-soybean formulation contained daidzein as the predominant isoflavone and demonstrated high antioxidant activity (91.90% DPPH inhibition). These findings suggest that the developed PBMA is a promising functional beverage with good nutritional and sensory qualities.

Full text article

Generated from XML file

References

A’yuni, N. R. L., Marsono, Y., Marseno, D. W., & Triwitono, P. (2022). Physical characteristics, nutrients, and antinutrients composition of pigeon pea (Cajanus cajan (L.) Mill sp.) grown in Indonesia. Food Research, 6(2), 53–63. https://doi.org/10.26656/fr.2017.6(2).172

Abebe, B. K. (2022). The dietary use of pigeon pea for human and animal diets. The Scientific World Journal, 2022, 4873008. https://doi.org/10.1155/2022/4873008

Ahmed, S., & Hasan, M. M. (2014). Legumes: an overview. Journal of Pharmacy and Pharmaceutical Sciences, 2(1), 34–38.

Andreani, G., Sogari, G., Marti, A., Froldi, F., Dagevos, H., & Martini, D. (2023). Plant-based meat alternatives: technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients, 15(2), 452. https://doi.org/10.3390/nu15020452

[AOAC] Association of Official Analytical Chemists. (2005). Official Methods of Analysis of AOAC International. In W. Horwitz & G. W. Latimer (Eds.), AOAC International (18th ed., Issue February). AOAC International. https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367

Aries, M., Sutiari, N. K., Nasution, Z., Nurdiani, R., Azra, J. M., & Roli, A. R. (2025). Pengetahuan, persepsi, dan perilaku konsumsi kacang undis (Cajanus cajan) masyarakat Bali. Gizi Indonesia, 48(1), 81–94. https://doi.org/10.36457/gizindo.v48i1.1099

Aschemann-Witzel, J., Gantriis, R. F., Fraga, P., & Perez-Cueto, F. J. A. (2020). Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Critical Reviews in Food Science and Nutrition, 61(18), 3119–3128. https://doi.org/10.1080/10408398.2020.1793730

Asres, A. M., Woldemariam, H. W., & Gemechu, F. G. (2022). Physicochemical and sensory properties of ice cream prepared using sweet lupin and soymilk as alternatives to cow milk. International Journal of Food Properties, 25(1), 278–287. https://doi.org/10.1080/10942912.2022.2032733

Aydar, E. F., Tutuncu, S., & Ozcelik, B. (2020). Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods, 70(July 2020), 103975. https://doi.org/10.1016/j.jff.2020.103975

Azra, J. M., Setiawan, B., Nasution, Z., & Sulaeman, A. (2021). Effects of variety and maturity stage of coconut on physicochemical and sensory characteristics of powdered coconut drink. Foods and Raw Materials, 9(1), 43–51. https://doi.org/10.21603/2308-4057-2021-1-43-51

Azra, J. M., Wijaya, H., & Nasution, Z. (2025). Increasing the dietary fibre content of chicken sausage using pigeon pea (Cajanus cajan) flour. Malaysian Journal of Medicine and Health Sciences, 21(Supp. 1), 61–62.

Baghbadorani, S. T., Ehsani, M. R., Mirlohi, M., Ezzatpanah, H., Azadbakht, L., & Babashahi, M. (2017). Antioxidant capability of ultra-high temperature milk and ultra-high temperature soy milk and their fermented products determined by four distinct spectrophotometric methods. Advanced Biomedical Research, 6(1), 62. https://doi.org/10.4103/2277-9175.207150

Banach, J. L., van der Berg, J. P., Kleter, G., van Bokhorst-van de Veen, H., Bastiaan-Net, S., Pouvreau, L., & van Asselt, E. D. (2022). Alternative proteins for meat and dairy replacers: Food safety and future trends. Critical Reviews in Food Science and Nutrition, 63(32), 11063–11080. https://doi.org/10.1080/10408398.2022.2089625

Brookfield Engineering Laboratories Inc. (2017). Brookfield Dial Reading Viscometer with Electronic Drive - Operating Instructions Manual (Vol. 1).

Callou, K. R. D. A., Sadigov, S., Lajolo, F. M., & Genovese, M. I. (2010). Isoflavones and antioxidant capacity of commercial soy-based beverages: Effect of storage. Journal of Agricultural and Food Chemistry, 58(7), 4284–4291. https://doi.org/10.1021/jf904130z

Collison, M. W. (2008). Determination of total soy isoflavones in dietary supplements, supplement ingredients, and soy foods by high-performance liquid chromatography with ultraviolet detection: collaborative study. Journal of AOAC Internaional, 91(3), 489–500. https://doi.org/10.1093/jaoac/91.3.489

Daryani, D., Pegua, K., & Aryaa, S. S. (2024). Review of plant-based milk analogue: its preparation, nutritional, physicochemical, and organoleptic properties. Food Science and Biotechnology, 33(5), 1059–1073. https://doi.org/10.1007/s10 068-023-01482-z

Durand, A., Franks, G. V., & Hosken, R. W. (2003). Particle sizes and stability of UHT bovine, cereal and grain milks. Food Hydrocolloids, 17(5), 671–678. https://doi.org/10.1016/S0268-005X(03)00012-2

Etiosa, O., Chika, N., & Benedicta, A. (2018). Mineral and proximate composition of soya bean. Asian Journal of Physical and Chemical Sciences, 4(3), 1–6. https://doi.org/10.9734/AJOPACS/2017/38530

Fitrotin, U., Utami, T., Hastuti, P., & Santoso, U. (2015). Antioxidant properties of fermented sesame milk using Lactobacillus plantarum Dad 13. International Research Journal of Biological Sciences, 4(6), 56–61.

[GFI] Good Food Institute. (2022). State of the industry report: Plant-based meat, seafood, eggs, and dairy. In Good Food Institute.

Haji, A., Teka, T. A., Bereka, T. Y., Andersa, K. N., Nekera, K. D., Abdi, G. G., Abelti, A. L., & Urugo, M. M. (2024). Nutritional composition, bioactive compounds, food applications, and health benefits of pigeon pea (Cajanus cajan L. Millsp.): A Review. Legume Science, 6(2), e233. https://doi.org/10.1002/leg3.233

He, J., Evans, N. M., Liu, H., & Shao, S. (2020). A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2639–2656. https://doi.org/10.1111/1541-4337.12610

Ismail, M. M., Abou-Dobara, M. I., & Nawal, M. R. (2018). Functional rice rayeb milk: chemical, microbiological and sensory properties. Journal of Nutrition and Health Sciences, 5(2), 203.

[ISO] International Organization for Standardization. (2023). ISO 8586:2023, Sensory analysis — Selection and training of sensory assessors. English version.

Jaeger, S. R., de Matos, A. D., Oduro, A. F., & Hort, J. (2024). Sensory characteristics of plant-based milk alternatives: Product characterisation by consumers and drivers of liking. Food Research International, 180(March), 114093. https://doi.org/10.1016/j.foodres.2024.114093

Jamalullail, N. A., Lin, C. Y., Kim, T. T., Ping, T. C., & Ming, L. O. (2023). Nutritional, physicochemical stability, microbial survivability and sensorial evaluation of legume yogurts. Journal of Microbiology, Biotechnology and Food Sciences, 12(4), e5141. https://doi.org/10.55251/jmbfs.5141

Jan, N. E., & Kawabata, S. (2011). Relationship between fruit soluble solid content and the sucrose concentration of the phloem sap at different leaf to fruit ratios in tomato. Journal of the Japanese Society for Horticultural Science, 80(3), 314–321. https://doi.org/10.2503/jjshs1.80.314

Jeske, S., Zannini, E., & Arendt, E. K. (2017). Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods for Human Nutrition, 72(1), 26–33. https://doi.org/10.1007/s11130-016-0583-0

Kakade, A., Khodke, S., Jadhav, S., Gajabe, M., & Othez, N. (2019). Effect of moisture content on physical properties of soybean. International Journal of Current Microbiology and Applied Sciences, 8(4), 1770–1782. https://doi.org/10.20546/ijcmas.2019.804.206

Kangli, W., Chang, L., Haizhen, D., Mingzhe, Y., Yajing, H., Chen, M., Kang, T., & Leiqing, P. (2019). Relationship between soluble solid and soluble sugar contents and optical properties of apple flesh. Food Science, 40(18), 1–7. https://doi.org/10.7506/spkx1002-6630-20190118-218

Kasapidou, E., Basdagianni, Z., Papatzimos, G., Papadopoulos, V., Tsiftsi, E., Neki, I., Nigianni, P. A., & Mitlianga, P. (2023). Chemical composition, antioxidant profile and physicochemical properties of commercial non-cocoa- and cocoa-flavoured plant-based milk alternatives. European Food Research and Technology, 249(12), 3011–3026. https://doi.org/10.1007/s00217-023-04345-3

Kim, H., Caulfield, L. E., Garcia-Larsen, V., Steffen, L. M., Coresh, J., & Rebholz, C. M. (2019). Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. Journal of the American Heart Association, 8(16), e012865. https://doi.org/10.1161/JAHA.119.012865

Kundu, P., Dhankhar, J., & Sharma, A. (2018). Development of non dairy milk alternative using soymilk and almond milk. Current Research in Nutrition and Food Science, 6(1), 203–210. https://doi.org/10.12944/CRNFSJ.6.1.23

Langyan, S., Yadava, P., Khan, F. N., Dar, Z. A., Singh, R., & Kumar, A. (2022). Sustaining protein nutrition through plant-based foods. Frontiers in Nutrition, 8, 772573. https://doi.org/10.3389/fnut.2021.772573

Lodha, D., Das, S., & Hati, S. (2021). Antioxidant activity, total phenolic content and biotransformation of isoflavones during soy lactic-fermentations. Journal of Food Processing and Preservation, 45(6), 1–9. https://doi.org/10.1111/jfpp.15583

Mäkinen, O. E., Wanhalinna, V., Zannini, E., & Arendt, E. K. (2016). Foods for special dietary needs: non-dairy plant-based milk substitutes and fermented dairy-type products. Critical Reviews in Food Science and Nutrition, 56(3), 339–349. https://doi.org/10.1080/10408398.2012.761950

Maleki, N., Khodaiyan, F., & Mousavi, S. M. (2015). Antioxidant activity of fermented hazelnut milk. Food Science and Biotechnology, 24(1), 107–115. https://doi.org/10.1007/s10068-015-0016-0

McCarron, R., Methven, L., Grahl, S., Elliot, R., & Lignou, S. (2024). Oat-based milk alternatives: the influence of physical and chemical properties on the sensory profile. Frontiers in Nutrition, 11, 1345371. https://doi.org/10.3389/fnut.2024.134 5371

McClements, D. J., Newman, E., & McClements, I. F. (2019). Plant-based milks: A review of the science underpinning their design, fabrication, and performance. Comprehensive Reviews in Food Science and Food Safety, 18(6), 2047–2067. https://doi.org/10.1111/1541-4337.12505

Meghrabi, S., & Yamani, M. I. (2023). Physicochemical and Sensory characteristics of a new milk substitute from dry white kidney bean. Food Science and Technology, 11(4), 218–225. https://doi.org/10.13189/fst.2023.110404

Molyneux P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211–219.

N’Kouka, K. D., Klein, B. P., & Lee, S. ‐Y. (2004). Developing a lexicon for descriptive analysis of soymilks. Journal of Food Science, 69(7), 259–263. https://doi.org/10.1111/j.1365-2621.2004.t b13625.x

Nasution, Z., Jirapakkul, W., & Lorjaroenphon, Y. (2018). Aroma compound profile of mature coconut water from tall variety through thermal treatment. Journal of Food Measurement and Characterization, 13(1), 277–286. https://doi.org/10.1007/s11694-018-9942-x

Odeny, D. A. (2007). The potential of pigeonpea (Cajanus cajan (L.) Millsp.) in Africa. Natural Resources Forum, 31(4), 297–305. https://doi.org/10.1111/j.1477-8947.2007.00157.x

Oshodi, A. A., Olaofe, O., & Hall, G. M. (1993). Amino acid, fatty acid and mineral composition of pigeon pea (Cajanus cajan). International Journal of Food Sciences and Nutrition, 43(4), 187–191. https://doi.org/10.3109/09637489309027541

Penha, C. B., Santos, V. D. P., Speranza, P., & Kurozawa, L. E. (2021). Plant-based beverages: Ecofriendly technologies in the production process. Innovative Food Science and Emerging Technologies, 72, 102760. https://doi.org/10.1016/j.ifset.2021.102760

Pistollato, F., Iglesias, R. C., Ruiz, R., Aparicio, S., Crespo, J., Lopez, L. D., Manna, P. P., Giampieri, F., & Battino, M. (2018). Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacological Research, 131, 32–43. https://doi.org/10.1016/j.phrs.2018.03.012

Pointke, M., Albrecht, E. H., Geburt, K., Gerken, M., & Traulsen, I. (2022). A comparative analysis of plant-based milk alternatives part 1: Composition, sensory, and nutritional value. Sustainability, 14(13), 7996. https://doi.org/10.3390/su14137996

Qin, P., Wang, T., & Luo, Y. (2022). A review on plant-based proteins from soybean: Health benefits and soy product development. Journal of Agriculture and Food Research, 7, 100265. https://doi.org/10.1016/j.jafr.2021.100265

Rahmawati, R., Muflihunna, A., & Sarif, L. M. (2016). Analisis aktivitas antioksidan produk sirup buah mengkudu (Morinda citrifolia L.) dengan metode DPPH. Jurnal Fitofarmaka Indonesia, 2(2), 97–101. https://doi.org/10.33096/jffi.v2i2.177

Romulo, A. (2022). Nutritional contents and processing of plant-based milk: A review. IOP Conference Series: Earth and Environmental Science. 5th International Conference on Eco Engineering Development (pp. 012054). Purpose-Led Publishing. https://doi.org/10.1088/1755-1315/998/1/012054

Rosenfeld, D. L. (2018). The psychology of vegetarianism: Recent advances and future directions. Appetite, 131, 125–138. https://doi.org/10.1016/j.appet.2018.09.011

Sethi, S., Tyagi, S. K., & Anurag, R. K. (2016). Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology, 53(9), 3408–3423. https://doi.org/10.1007/s13197-016-2328-3

Setiawan, B., Azra, J. M., Nasution, Z., Sulaeman, A., & Estuningsih, S. (2022). Development of freeze-dried coconut drink and its nutrient content, sensory profile, and shelf life. Journal of Culinary Science & Technology, 22(4), 787–803. https://doi.org/10.1080/15428052.2022.2079578

Sharma, S., Kaur, M., Goyal, R., & Gill, B. S. (2014). Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. Journal of Food Science and Technology, 51(3), 551–557. https://doi.org/10.1007/s13197-011-0517-7

Syed, R., & Wu, Y. (2018). A review article on health benefits of pigeon pea (Cajanus cajan (L.) Millsp). International Journal of Food and Nutrition Research, 1–17. https://doi.org/10.28933/ijfnr-2018-09-0301

Szostak, B., Głowacka, A., Kasiczak, A., Kiełtyka-Dadasiewicz, A., & Bąkowski, M. (2020). Nutritional value of soybeans and the yield of protein and fat depending on a cultivar and the level of nitrogen application. Journal of Elementology, 25(1), 45–57. https://doi.org/10.5601/jelem.2019.24.2.1769

Tachie, C., Nwachukwu, I. D., & Aryee, A. N. A. (2023). Trends and innovations in the formulation of plant-based foods. Food Production, Processing and Nutrition, 5(1), 16. https://doi.org/10.1186/s43014-023-00129-0

Tamangwa, M. W., Djikeng, F. T., Feumba, R. D., Sylvia, V. T. Z. N., Loungaing, V. D., & Womeni, H. M. (2023). Nutritional composition, phytochemical, and functional properties of six soybean varieties cultivated in Cameroon. Legume Science, 5(4), e210. https://doi.org/10.1002/leg3.210

Tobolková, B., & Durec, J. (2023). Colour descriptors for plant-based milk alternatives discrimination. Journal of Food Science and Technology, 60(9), 2497–2501. https://doi.org/10.1007/s13197-023-05773-5

Torres, A., Frias, J., Granito, M., & Vidal-Valverde, C. (2007). Germinated Cajanus cajan seeds as ingredients in pasta products: Chemical, biological and sensory evaluation. Food Chemistry, 101(1), 202–211. https://doi.org/10.1016/j.foodchem.2006.01.018

Tungmunnithum, D., Drouet, S., Lorenzo, J. M., & Hano, C. (2021). Green extraction of antioxidant flavonoids from pigeon pea (Cajanus cajan). Molecules, 26(24), 7557. https://doi.org/10.3390/molecules26247557

van Vliet, S., Kronberg, S. L., & Provenza, F. D. (2020). Plant-based meats, human health, and climate change. Frontiers in Sustainable Food Systems, 4, 128. https://doi.org/10.3389/fsufs.2020.00128

Vanga, S. K., & Raghavan, V. (2018). How well do plant based alternatives fare nutritionally compared to cow’s milk? Journal of Food Science and Technology, 55(1), 10–20. https://doi.org/10.1007/s13197-017-2915-y

Wu, J., Zhou, Q., Zhou, C., Cheng, K. W., & Wang, M. (2024). Strategies to promote the dietary use of pigeon pea (Cajanus cajan L.) for human nutrition and health. Food Frontiers, 5(3), 1014–1030. https://doi.org/10.1002/fft2.381

Yang, S. E., Vo, T. L. T., Chen, C. L., Yang, N. C., Chen, C. I., & Song, T. Y. (2020). Nutritional composition, bioactive compounds and functional evaluation of various parts of Cajanus cajan (L.) millsp. Agriculture, 10(11), 558. https://doi.org/10.3390/agriculture10110558

Yogeswara, I. B. A., Kusumawati, I. G. A. W., Nursini, N. W., Mariyatun, M., Rahayu, E. S., & Haltrich, D. (2023). Health-promoting role of fermented pigeon pea (Cajanus cajan L (Mill)) milk enriched with γ-aminobutyric acid (GABA) using probiotic Lactiplantibacillus plantarum Dad-13. Fermentation, 9(7), 587. https://doi.org/10.3390/fermentation9070587

Authors

Jeallyza Muthia Azra
Reisi Nurdiani
reisi2013@apps.ipb.ac.id (Primary Contact)
Zuraidah Nasution
Muhammad Aries
Ni Ketut Sutiari
Azra, J. M., Nurdiani, R., Nasution, Z., Aries, M., & Sutiari, N. K. (2025). Physicochemical and Sensory Properties of Plant-Based Milk Alternative Produced from Pigeon Pea and Soybean. Jurnal Teknologi Dan Industri Pangan, 36(2), 167-180. https://doi.org/10.6066/jtip.2025.36.2.167

Article Details

How to Cite

Azra, J. M., Nurdiani, R., Nasution, Z., Aries, M., & Sutiari, N. K. (2025). Physicochemical and Sensory Properties of Plant-Based Milk Alternative Produced from Pigeon Pea and Soybean. Jurnal Teknologi Dan Industri Pangan, 36(2), 167-180. https://doi.org/10.6066/jtip.2025.36.2.167