Glutamic Acid Production by Lactic Acid Bacteria Isolated from Indonesian Fermented Food Salted Mustard Greens and Dangke Cheese
Abstract
Glutamic acid is an additive compound widely added to food to enhance the savory taste (umami). Lactic acid bacteria (LAB) are included in Generally Recognized as Safe (GRAS) and have the potential to produce various metabolite compounds, including glutamic acid, through fermentation. LAB can be isolated from salted mustard greens and dangke cheese. This study aimed to analyze the effect of LAB isolate types and fermentation time on the production of glutamic acid, glutamic acid profiling, and molecularly identify the LAB genus that produces the highest glutamic acid based on the 16S rRNA gene. The fermentation process of LAB was carried out using four selected isolates: D16, D15, S4, and S15, which were isolated from salted mustard greens and dangke cheese. Each isolate was incubated for five different incubation times: 0, 12, 24, 48, and 72 h. The identification of glutamic acid was carried out using the Thin Layer Chromatography (TLC) method, its quantification by spectrophotometry, and profiling by High-Performance Liquid Chroma-tography (HPLC). In addition, molecular identification of the highest-producing LAB isolate was conducted based on the 16S rRNA gene. The results showed that isolate S4 from salted mustard greens produced the highest glutamic acid after 48 h, with 670.05 mg/L and a total glutamic acid of 0.23% (w/w) based on HPLC results. Isolate S4 is known to be molecularly similar to the Pediococcus pentosaceus species. Local LAB isolates from salted mustard greens and dangke cheese can produce glutamic acid that can be used to enhance the taste of fermented foods.
Full text article
References
Abdullah, D., Poddar, S., Rai, R. P., Purwati, E., Dewi, N. P., & Pratama, Y. E. (2021). Molecular identification of lactic acid bacteria: An approach to sustainable food security. Journal of Public Health Research, 10(s2), jphr.2021.2508. https://doi.org/10.4081/jphr.2021.2508
Aýun, Q., Muthiáh, S. N., & Sukmalara, D. (2023). Potensi bakteri asam laktat (BAL) dari jus tempe sebagai kandidat probiotik. Jurnal Al-Azhar Indonesia Seri Sains dan Teknologi, 8(2), 171–177. https://doi.org/10.36722/sst.v8i2.1673
Azhara, I., Rais, M., Sukainah, A., & Putra, R. P. (2022). Isolasi dan identifikasi bakteri asam laktat pada fermentasi spontan biji kopi robusta asal Bantaeng. Jurnal Teknologi Pertanian, 23(1), 49–60. https://doi.org/10.21776/ub.jtp.2022.023.01.5
Azizah, S. N., Rosida, R., Hidayah, A. N., & Dwijayanti, A. R. (2023). Lactic acid bacteria administration from Jember tempeh (Indonesia) as a probiotic candidate in intestinal physiology and histology of mice strain Balb-C. Biodiversitas Journal of Biological Diversity, 24(12). https://doi.org/10.13057/biodiv/d241258
Baek, J. H., Han, D. M., Choi, D. G., & Jeon, C. O. (2024). Unraveling the carbohydrate metabolic characteristics of Leuconostoc mesenteroides J18 through metabolite and transcriptome analyses. Food Chemistry, 435, 137594. https://doi.org/10.1016/j.foodchem.2023.137594
Chen, C., Zhao, S., Hao, G., Yu, H., Tian, H., & Zhao, G. (2017). Role of lactic acid bacteria on yogurt flavour: A review. International Journal of Food Properties, 20(sup1), S316–S330. https://doi.org/10.1080/10942912.2017.1295988
Chen, T., Wang, L., Li, Q., Long, Y., Lin, Y., Yin, J., & et al. (2020). Functional probiotics of lactic acid bacteria from Hu sheep milk. BMC Microbiology, 20, 228. https://doi.org/10.1186/s12866-020-01920-6
Chun, B. H., Kim, K. H., Jeon, H. H., Lee, S. H., & Jeon, C. O. (2017). Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation. Scientific Reports, 7(1), 11504. https://doi.org/10.1038/s41598-017-12016-z
Cynober, L. (2018). Metabolism of dietary glutamate in adults. Annals of Nutrition and Metabolism, 73(Suppl 5), 5–14. https://doi.org/10.1159/000494776
Egbujor, M. C., Olaniyan, O. T., Emeruwa, C. N., Saha, S., Saso, L., & Tucci, P. (2024). An insight into the role of amino acids as antioxidants via NRF2 activation. Amino Acids, 56(1), 23. https://doi.org/10.1007/s00726-024-03384-8
Fachrial, E., Ismawati, Jati, A. P., Nugroho, T. T., & Saryono. (2025). Isolation and characterization of lactic acid bacteria from “trites” having the ability to produce α‐glucosidase inhibitors. International Journal of Microbiology, 2025(1), 8864668. https://doi.org/10.1155/ijm/8864668
Ganguly, S. (2023). The pivotal role of Corynebacterium glutamicum in l-glutamic acid fermentation: A concise review. Biocatalysis and Agricultural Biotechnology, 47, 102578. https://doi.org/10.1016/j.bcab.2022.102578
Ghazanfari, N., Fallah, S., Vasiee, A., & Yazdi, F. T. (2023). Optimization of fermentation culture medium containing food waste for l-glutamate production using native lactic acid bacteria and comparison with industrial strain. LWT - Food Science and Technology, 184, 114871. https://doi.org/10.1016/j.lwt.2023.114871
Goa, T., Beyene, G., Mekonnen, M., & Gorems, K. (2022). Isolation and characterization of lactic acid bacteria from fermented milk produced in Jimma Town, Southwest Ethiopia, and evaluation of their antimicrobial activity against selected pathogenic bacteria. International Journal of Food Science, 2022(1), 2076021. https://doi.org/10.1155/2022/2076021
Gökmen, G. G., Sarıyıldız, S., Cholakov, R., Nalbantsoy, A., Baler, B., Aslan, E., Düzel, A., Sargın, S., Göksungur, Y., & Kışla, D. (2024). A novel Lactiplantibacillus plantarum strain: Probiotic properties and optimization of the growth conditions by response surface methodology. World Journal of Microbiology and Biotechnology, 40, 66. https://doi.org/10.1007/s11274-023-03862-3
Gonzalez, J. M., & Aranda, B. (2023). Microbial growth under limiting conditions-future perspectives. Microorganisms, 11(7), 1641. https://doi.org/10.3390/microorganisms11071641
Guadarrama-Pérez, O., Moeller-Chávez, G. E., Bustos-Terrones, V., Guillén-Garcés, R. A., Hernández-Romano, J., Barragán-Trinidad, M., Estrada-Arriaga, E. B., & Guadarrama-Pérez, V. H. (2024). Identification of sugars as root exudates of the macrophyte species Juncus effusus and Philodendron cordatum in constructed wetland-microbial fuel cells during bioelectricity production.
Environmental Technology, 45(4), 716-730. https://doi.org/10.1080/09593330.2022.2121180
Guryanov, I., & Naumenko, E. (2024). Bacterial Pigment prodigiosin as multifaceted compound for medical and industrial application. Applied Microbiology, 4(4), 1702-1728. https://doi.org/10.3390/applmicrobiol4040115
Gwin, J. A., Church, D. D., Wolfe, R. R., Ferrando, A. A., & Pasiakos, S. M. (2020). Muscle protein synthesis and whole-body protein turnover responses to ingesting essential amino acids, intact protein, and protein-containing mixed meals with considerations for energy deficit. Nutrients, 12(8), 2457. https://doi.org/10.3390/nu12082457
Helmstetter, F., Arnold, P., Höger, B., Petersen, L. M., & Beitz, E. (2019). Formate–nitrite transporters carrying nonprotonatable amide amino acids instead of a central histidine maintain pH-dependent transport. Journal of Biological Chemistry, 294(2), 623–631. https://doi.org/10.1074/jbc.RA118.006340
Hussein, M. A., Hameed, R. M., & Hnewa, R. A. A. (2021). Qualitative analysis of standard amino acid by thin layer chromatography in examination of inborn errors of metabolism. Scientific Journal of Medical Research, 5(19), 73-77.
Ismail, Y. S., Yulvizar, C., & Putriani. (2017). Isolasi, karakterisasi dan uji aktivitas antimikroba bakteri asam laktat dari fermentasi biji kakao (Theobroma cacao L.). Bioleuser, 1(2), 45–53.
Kamble, C., Chavan, R., & Kamble, V. (2021). A review on amino acids. Research & Reviews: A Journal of Drug Design & Discovery, 8(3), 19–27. https://doi.org/10.37591/RRJoDDD
Lee, J., Heo, S., Choi, J., Kim, M., Pyo, E., Lee, M., Shin, S., Lee, J., Sim, J., & Jeong, D. W. (2021). Selection of Lactococcus lactis HY7803 for glutamic acid production based on comparative genomic analysis. Journal of Microbiology and Biotechnology, 31(2), 298–303. https://doi.org/10.4014/jmb.2011.11022
Lemoine, F., & Gascuel, O. (2024). The bayesian phylogenetic bootstrap and its application to short trees and branches. Molecular biology and evolution, 41(11), msae238. https://doi.org/10.1093/molbev/msae238
Liu, H., & Chen, Y. (2018). Enhanced methane production from food waste using cysteine to increase biotransformation of L-monosaccharide, volatile fatty acids, and biohydrogen. Environmental Science & Technology, 52(6), 3777–3785. https://doi.org/10.1021/acs.est.7b0 5355
Liu, H., Xu, H., Ma, C., Zhu, Z., Xu, T., Guo, Y., & Ye, J. (2022). Review on the intermediate amino acids and their enantiomers during the anaerobic digestion: the distribution, biofunctions, and mechanisms. Reviews in Environmental Science and Bio/Technology, 21(2), 469–482. https://doi.org/10.1007/s11157-022-09614-3
Mahdi, M. J., & Hidayat, R. (2022). Prarancangan pabrik monosodium glutamat dari molase dan urea dengan proses biosintesis kapasitas 80.000 ton/tahun. Jurnal Tugas Akhir Teknik Kimia, 5(1), 65–69.
Maldonado-Ruiz, K., Pedroza-Islas, R., & Pedraza-Segura, L. (2024). Blue biotechnology: marine bacteria bioproducts. Microorganisms, 12(4), 697. https://doi.org/10.3390/microorganisms12040697
Mardiana, N. A., Murniasih, T., Rukmi, W. D., & Kusnadi, J. (2020). Potensi bakteri laut sebagai sumber antibiotik baru penghambat Staphylococcus aureus. Jurnal Teknologi Pertanian, 21(1), 49–56. https://doi.org/10.21776/ub.jtp.2020.021.01.6
Maslami, V., Marlida, Y., Mirnawati, & Nur, Y. S. (2023). The potency of glutamate producing lactic acid bacteria isolated as additive feed in improving broiler performance. Jurnal Ilmu dan Teknologi Peternakan Tropis, 10(1), 62–68.
Maslami, V., Marlida, Y., Mirnawati, M., Jamsari, J., & Nur, Y. S. (2018). Isolasi bakteri asam laktat (BAL) penghasil asam glutamat dari ikan budu sebagai feed suplemen ayam broiler. Jurnal Peternakan Indonesia (Indonesian Journal of Animal Science), 20(1), 29−36. https://doi.org/10.25077/jpi.20.1.29-36.2018
Melia, S., Juliyarsi, I., Kurnia, Y. F., Pratama, Y. E., & Pratama, D. R. (2020). The quality of fermented goat milk produced by Pediococcus acidilactici BK01 on refrigerator temperature. Biodiversitas, 21(10), 4591–4596. https://doi.org/10.13057/biodiv/d211017
Ojha, K. K., Mishra, S., & Singh, V. K. (2022). Computational molecular phylogeny: Concepts and applications. Bioinformatics (pp. 67–89). Elsevier. https://doi.org/10.1016/B978-0-323-89775-4.00025-0
Pangestika, W., Al-Baarri, A. N. M., & Legowo, A. M. (2018). The change in pH on Lactobacillus acidophilus medium containing D-fructose. Journal of Applied Food Technology, 5(2), 37–38. https://doi.org/10.17728/jaft.4870
Papadimitriou, K., Alegría, Á., Bron, P. A., De Angelis, M., Gobbetti, M., Kleerebezem, M., Lemos, J. A., Linares, D. M., Ross, P., Stanton, C., Turroni, F., van Sinderen, D., Varmanen, P., Ventura, M., Zúñiga, M., Tsakalidou, E., & Kok, J. (2016). Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews, 80(3), 837–890. https://doi.org/10.1128/MMBR.00076-15
Quintanilla-Villanueva, G. E., Rodríguez-Delgado, M. M., Villarreal-Chiu, J. F., Blanco-Gámez, E. A., & Luna-Moreno, D. (2024). The role of amino acid glycine on cardiovascular health and its beneficial effects: A narrative review. Journal of Vascular Diseases, 3(2), 201–211. https://doi.org/10.3390/jvd3020016
Rahmayetty, R., Yulvianti, M., & Hartono, R. (2022). Synthesis of lactic acid from molasses by Lactobacillus acidophilus using a batch fermentation process. Jurnal Rekayasa Kimia dan Lingkungan, 17(2), 104–113. https://doi.org/10.23955/rkl.v17i2.25657
Ramesha, V., & Deeksha, R. N. (2019). Production of secondary metabolites. The Pharma Innovation Journal, 8(12), 46–48.
Sasmita, S., Halim, A., Sapriati, A. N., & Kursia, S. (2018). Isolasi dan identifikasi bakteri asam laktat dari liur basa (limbah sayur bayam dan sawi). As-Syifaa, 10(2), 141–151. https://doi.org/10.33096/jifa.v10i2.339
Shangguan, L., Zhang, H., Liu, Z., An, F., Yang, Q., Zhang, X., Yao, L., Yang, S., Dai, J., & Chen, X. (2023). Improved glutamic acid production capacity of Corynebacterium glutamicum by the ARTP mutagenesis method. Fermentation, 9(7), 599. https://doi.org/10.3390/fermentation9070599
Sheikh, H., Anand, G. G., & Shivanna, G. B. (2024). Fermentation: a potential strategy for microbial metabolite production. IntechOpen. https://doi.org/10.5772/intechopen.114814
Shehata, M. G., El Sohaimy, S. A., El-Sahn, M. A., & Youssef, M. M. (2016). Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Annals of Agricultural Sciences, 61(1), 65–75. https://doi.org/10.1016/j.aoas.2016.03.001
Song, L., Yang, D., Liu, R., Liu, S., & Dai, X. (2023). The dissolution of polysaccharides and amino acids enhanced lactic acid production from household food waste during pretreatment process. Science of the Total Environment, 864, 161068. https://doi.org/10.1016/j.scitotenv.2022.161068
Syahputra, A., Mutaqin, K. H., & Damayanti, T. A. (2016). Komparasi metode isolasi DNA patogen antraknosa dan bulai untuk deteksi PCR. Jurnal Fitopatologi Indonesia, 12(4), 124–124.
Tathode, M. S., Bonomo, M. G., Zappavigna, S., Mang, S. M., Bocchetti, M., Camele, I., Caraglia, M., & Salzano, G. (2024). Whole-genome analysis suggesting probiotic potential and safety properties of Pediococcus pentosaceus DSPZPP1, a promising LAB strain isolated from traditional fermented sausages of the Basilicata region (Southern Italy). Frontiers in Microbiology, 15, 1268216. https://doi.org/10.3389/fmicb.2024.1268216
Thuy, L. N., Salanță, L., Tofană, M., Socaci, S. A., Fărcaș, A. C., & Pop, C. R. (2020). A mini review about monosodium glutamate. Bulletin UASVM Food Science and Technology, 77(1), 1–12. https://doi.org/10.15835/buasvmcn-fst:2019.0029
Toe, C. J., Foo, H. L., Loh, T. C., Mohamad, R., Rahim, R. A., & Idrus, Z. (2019). Extracellular proteolytic activity and amino acid production by lactic acid bacteria isolated from Malaysian foods. International Journal of Molecular Sciences, 20(7), 1777. https://doi.org/10.3390/ijms20071777
Tunio, A. A., Naqvi, S. H., Tunio, Q., Rehman, T., Bhutto, M. A., & Mugheri, M. H. (2022). Determination of antioxidant, antimicrobial properties with evaluation of biochemicals and phytochemicals present in Oscillatoria limosa of District Jamshoro, Pakistan. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(3), 538–547. https://doi.org/10.29133/yyutbd.1112896
Wang, M., Zhang, X., Huang, H., Qin, Z., Liu, C., & Chen, Y. (2022). Amino acid configuration affects volatile fatty acid production during proteinaceous waste valorization: Chemotaxis, quorum sensing, and metabolism. Environmental Science & Technology, 56(12), 8702–8711. https://doi.org/10.1021/acs.est.1c07894
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9, 612285. https://doi.org/10.3389/fbioe.2021.612285
Wang, Z., Lao, J., Kang, X., Xie, Z., He, W., Liu, X., Zhong, C., Zhang, S., & Jin, J. (2023). Insights into the metabolic profiling of Polygonati Rhizoma fermented by Lactiplantibacillus plantarum under aerobic and anaerobic conditions using a UHPLC-QE-MS/MS system. Frontiers in Nutrition, 10, 1093761. https://doi.org/10.3389/fnut.2023.1093761
Yeo, K., Li, R., Wu, F., Bouras, G., Mai, L. T. H., Smith, E., Wormald, P., Valentine, R., Psaltis, A. J., Vreugde, S., & Fenix, K. (2024). Identification of consensus head and neck cancer-associated microbiota signatures: A systematic review and meta-analysis of 16S rRNA and The Cancer Microbiome Atlas datasets. Journal of Medical Microbiology, 73(2), 001799. https://doi.org/10.1099/jmm.0.001799
Zaghloul, E. H., & Halfawy, N. M. E. (2024). Marine Pediococcus pentosaceus E3 probiotic properties, whole-genome sequence analysis, and safety assessment. Probiotics and Antimicrobial Proteins, 16, 1925–1936. https://doi.org/10.1007/s12602-024-10283-7
Zhang, H., Wang, Z., Li, Z., Wang, K., Kong, B., & Chen, Q. (2022). L-glycine and L-glutamic acid protect Pediococcus pentosaceus R1 against oxidative damage induced by hydrogen peroxide. Food Microbiology, 101, 103897. https://doi.org/10.1016/j.fm.2021.103897
Zhang, Y., Venkitasamy, C., Pan, Z., & Liu, W. (2017). Novel umami ingredients: Umami peptides and their taste. Journal of Food Science, 82(1), 16–23. https://doi.org/10.1111/1750-3841.13576
Zhao, J., Siddiqui, S., Shang, S., Bian, Y., Bagchi, S., He, Y., & Wang, C. R. (2015). Mycolic acid-specific T cells protect against Mycobacterium tuberculosis infection in a humanized transgenic mouse model. eLife, 4, e08525. https://doi.org/10.7554/eLife.08525
Zhou, Y., Zhang, X., Wang, Y., & Liu, H. (2024). Mechanism and effect of amino acids on lactic acid production in acidic fermentation of food waste. Fermentation, 10(4), 179. https://doi.org/10.3390/fermentation10040179
Authors
Copyright (c) 2025 Silvana Nurulfauziyyah Indahsari, Siti Nur Jannah, Arina Tri Lunggani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.