Pendugaan Peptida Bioaktif Cadangan Protein Koro Pedang Hasil Hidrolisis Protease Tubuh Melalui Pendekatan In Silico

Marciano Oscar Maida(1) , Azis Boing Sitanggang(2) , Slamet Budijanto(3)
(1) Program Studi Ilmu Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(2) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(3) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia

Abstract

The jack bean plant (Canavalia ensiformis L.) contains storage proteins composed of essential amino acids, and the biological activity of these components occurs after a hydrolysis process. The hydrolysis of peptide bonds that appear in the digestive tract can be identified using an in silico approach that utilises a bioinformatics web page. This study aims to predict bioactive peptides resulting from the hydrolysis of storage proteins in the jack beans using a web-based in silico method. Based on literature studies, the jack bean’s dominant storage proteins include canavalin, concanavalin A, and concanavalin B. The amino acid sequences of each type of protein were obtained from the Universal Protein Resource (UniProt) page. Simulations of hydrolysis or cleavage of peptide bonds in the body using Gastrointestinal System (GIS) enzymes, in the form of pepsin, trypsin, and chymotrypsin or a combination thereof, were carried out in the Expert Protein Analysis System (ExPASy) portal on the Peptide Cutter page. The bioactive peptides resulting from the cleavage were identified for their suitability based on the literature using the BIOPEP-UWM database. The simulation results indicate that all jack bean storage proteins possess biological properties, including antihypertensives, antidiabetics, and antioxidant effects. Concanavalin A produced the highest bioactive peptide yield of 82.89%, followed by concanavalin B at 64.23%, and canavalin at 48.95%. The estimation of bioactive peptides from jack bean storage proteins by hydrolysis of body proteases using an in silico approach proved helpful. It can be further applied to other protein sources using different enzyme combinations.

Full text article

Generated from XML file

References

Bai, M., He, J., Kang, L., Nie, J., & Yin, R. (2018). Regulated basal and bolus insulin release from glucose-responsive core-shell microspheres based on concanavalin A-sugar affinity. International Journal of Biological Macromolecules, 113, 889–899. https://doi.org/10.1016/j.ijbiomac.2018.03.030

Chalamaiah, M., Ulug, S. K., Hong, H., & Wu, J. (2019). Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods, 58, 123–129. https://doi.org/10.1016/j.jff.2019.04.050

Daroit, D. J., & Brandelli, A. (2021). In vivo bioactivities of food protein-derived peptides – a current review. Current Opinion in Food Science, 39, 120–129. https://doi.org/10.1016/j.cofs.2021.01.002

Duvaud, S., Gabella, C., Lisacek, F., Stockinger, H., Ioannidis, V., & Durinx, C. (2021). Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Research, 49(W1), W216–W227. https://doi.org/10.1093/nar/gkab225

El-Sayed, H. S., Salama, H. H., & Edris, A. E. (2020). Survival of Lactobacillus helveticus CNRZ32 in spray dried functional yogurt powder during processing and storage. Journal of the Saudi Society of Agricultural Sciences, 19(7), 461–467. https://doi.org/10.1016/j.jssas.2020.08.003

Fahri, M. I., Sherlyna, F., & Nurcholis, M. (2022). In silico analysis of protein of milk, soybean, and kefir as anti-thrombotic bioactive peptide. HAYATI Journal of Biosciences, 30(2), 216–223. https://doi.org/10.4308/hjb.30.2.216-223

Fu, Z., Akula, S., Thorpe, M., & Hellman, L. (2021). Marked difference in efficiency of the digestive enzymes pepsin, trypsin, chymotrypsin, and pancreatic elastase to cleave tightly folded proteins. Biological Chemistry, 402(7), 861–867. https://doi.org/10.1515/hsz-2020-0386

Harvian, Z. A., Ningrum, A., Anggrahini, S., & Setyaningsih, W. (2019). In silico approach in evaluation of jack bean (Canavalia ensiformis) canavalin protein as precursors of bioactive peptides with dual antioxidant and angiotensin I-converting enzyme inhibitor. Materials Science Forum, 948, 85–94. https://doi.org/10.4028/www.scientific.net/MSF.948.85

Iwaniak, A., Minkiewicz, P., & Darewicz, M. (2024). BIOPEP-UWM database – present and future. Current Opinion in Food Science, 55, 101108.https://doi.org/10.1016/j.cofs.2023.101108

Maldonado-Torres, D. A., Jara-Romero, G. J., Rosas-Cárdenas, F. F., Fernández-Velasco, D. A., & Luna-Suárez, S. (2021). Engineering concanavalin B to release bioactive peptides against metabolic syndrome. Foods, 10(7), 1554. https://doi.org/10.3390/foods10071554

McPherson, A. (2020). Binding of benzoic acid and anions within the cupin domains of the vicilin protein canavalin from jack bean (Canavalia ensiformis): Crystal structures. Biochemical and Biophysical Research Communications, 524(1), 268–271. https://doi.org/10.1016/j.bbrc.2020.01.101

Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM database of bioactive peptides: Current opportunities. International Journal of Molecular Science, 20(23), 5978. https://doi.org/10.3390/ijms20235978

Nongonierma, A. B., & FitzGerald, R. J. (2015). Bioactive properties of milk proteins in humans: A review. Peptides, 73, 20–34. https://doi.org/10.1016/j.peptides.2015.08.009

Puspitojati, E., Cahyanto, M. N., Marsono, Y., & Indrati, R. (2019). Production of Angiotensin-I-Converting Enzyme (ACE) inhibitory peptides during the fermentation of jack bean (Canavalia ensiformis) tempe. Pakistan Journal of Nutrition, 18(5), 464–470. https://doi.org/10.3923/pjn.2019.464.470

Retnowati, R. D., Nuryady, M. M., Purwanti, E., Wahyuni, S., & Hindun, I. (2024). Immunostimulanting effect of jackbean flour on non-specific immunity of mice in vitro and in silico. Green and Tropical Laboratory for Sustainability, 1(1), 19–25. https://doi.org/10. 22219/gtlabs.v1i1.36289

Rizello, C. G., Tagliazucchi, D., Babini, E., Rutella, G. S., Saa, D. L. T., & Gianotti, A. (2016). Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods, 27, 549–569. https://doi.org/10.1016/j.jff.2016.09.023

Sánchez, A., & Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1), 29–46. https://doi.org/10.1093/fqs/fyx006

Saragih, M. P., Suharsi, T. K., & Qadir, A. (2018). Pertumbuhan dan pembungaan tanaman koro pedang (Canavalia ensiformis) pada kondisi ternaungi dan kombinasi pemupukan berbeda. Buletin Agrohorti, 6(3), 382–387. https://doi.org/10.29244/agrob.v6i3.21106

Sitanggang, A. B., Sudarsono, S., & Syah, D. (2018). Pendugaan peptida bioaktif dari susu terhidrolisis oleh protease tubuh dengan teknik in silico. Jurnal Teknologi dan Industri Pangan, 29(1), 93–101. https://doi.org/10.6066/jtip.2018.29.1.93

Tamam, B. (2020). Peptida bioaktif pada tempe, serta perannya bagi kesehatan. PT Penerbit Nuha Medika, Yogyakarta, 75–93.

The UniProt Consortium. (2023). UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Research, 52(D1), D523–D531. https://doi.org/10.1093/nar/gkac1052

Vreeke, G. J. C., Vincken J. P., & Wierenga, P. A. (2023). The path of proteolysis by bovine chymotrypsin. Food Research International, 165, 112485. https://doi.org/10.1016/j.foodres.2023.112485

Wijatnoko, B. D., Yamamoto, Y., Hirayama, M., & Suzuki, T. (2024). Identification and molecular mechanism of anti-inflammatory peptides isolated from jack bean protein hydrolysates: in vitro studies with human intestinal Caco-2BBe cells. Plant Foods for Human Nutrition, 79, 624–631. https://doi.org/10.1007/s11130-024-01201-x

Witono, Y., Maryanto, M., Taruna, I., Masahid, A. D., Cahyaningati, K. (2020). Aktivitas antioksidan hidrolisat protein ikan wader (Rasbora jacobsoni) dari hidrolisis oleh enzim calotropin dan papain. Jurnal Agroteknologi, 14(1), 44–57.

Zaru, R., Orchard, S., & The UniProt Consortium. (2023). UniProt tools: BLAST, align, peptide search and ID mapping. Current Protocols, 3(3), e697. https://doi.org/10.1002/cpz1.697

Zhang, G., & Zhu, T. F. (2024). Mirror-image trypsin digestion and sequencing of D-proteins. Nature Chemistry, 16, 592–598. https://doi.org/10.1038/s41557-023-01411-x

Zhang, Y., Aryee, A. N. A., & Simpson, B. K. (2020). Current role of in silico approaches for food enzymes. Current Opinion in Food Science, 31, 63–70. https://doi.org/10.1016/j.cofs.2019.11.003

Zhou, J., Ma, H., Guan, M., Feng, J., Dong, X., Wei, Y., & Zhang, T. (2024). Anti-inflammatory Fucoidan-ConA oral insulin nanosystems for smart blood glucose regulation. International Journal of Pharmaceutics, 659, 124250.

https://doi.org/10.1016/j.ijpharm.2024.124250

Authors

Marciano Oscar Maida
Azis Boing Sitanggang
boing.lipan@apps.ipb.ac.id (Primary Contact)
Slamet Budijanto
Maida, M. O., Sitanggang, A. B., & Budijanto, S. (2025). Pendugaan Peptida Bioaktif Cadangan Protein Koro Pedang Hasil Hidrolisis Protease Tubuh Melalui Pendekatan In Silico. Jurnal Teknologi Dan Industri Pangan, 36(2), 288-299. https://doi.org/10.6066/jtip.2025.36.2.288

Article Details

How to Cite

Maida, M. O., Sitanggang, A. B., & Budijanto, S. (2025). Pendugaan Peptida Bioaktif Cadangan Protein Koro Pedang Hasil Hidrolisis Protease Tubuh Melalui Pendekatan In Silico. Jurnal Teknologi Dan Industri Pangan, 36(2), 288-299. https://doi.org/10.6066/jtip.2025.36.2.288