Bioaksesibilitas Senyawa Fenolik Minuman Kakao Pasteurisasi dengan Penambahan Matriks Susu

Dwi Indah Permata Sari(1) , Endang Prangdimurti(2) , Dias Indrasti(3)
(1) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(2) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(3) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia

Abstract

Cocoa beans and their derivatives are well-known for their health benefits, primarily attributed to phenolic compounds. While some research has explored the interactions of these compounds within food matrices, there were few reports on the release of cocoa phenolics in the gastrointestinal tract when consumed as part of complex foods. This study aimed to evaluate how incorporation of whole-fat milk powder (CF), skimmed milk powder (CS), and whey protein powder (CW) into pasteurized cocoa beverages impacts the in vitro release of phenolic compounds throughout gastrointestinal digestion. The initial analysis included quantifying total phenolics and flavonoids in the undigested samples. Subsequently, simulated gastrointestinal digestion was performed, followed by analysis of total phenolics and flavonoids at each digestion stage. The extent of compound release was expressed as the recovery index (RI) and bioaccessibility index (BI). The results showed that the addition of milk matrices (CF, CS, CW) significantly decreased the total phenolic content of cocoa beverages (p<0.05) across all digestion phases. CW had the highest RI for total phenolics (202.67±7.67%). This study suggests that although the addition of milk decreased the initial phenolic content  in undigested cocoa beverages, an increase in RI of phenolics was observed after the gastric digestion phase, especially in the beverages containing whey protein.

Full text article

Generated from XML file

References

Alongi, M., Calligaris, S., & Anese, M. (2019). Fat concentration and high-pressure homogeni-zation affect chlorogenic acid bioaccessibility and α-glucosidase inhibitory capacity of milk-based coffee beverages. Journal of Functional Foods, 58, 130–137. https://doi.org/10.1016/j.jff.2019.04.057

Balakrishnan, G., & Schneider, R. G. (2020). Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. Journal of Cereal Science, 95, 103070. https://doi.org/10.1016/j.jcs.2020.103070

Baranowska, M., Suliborska, K., Todorovic, V., Kusznierewicz, B., Chrzanowski, W., Sobajic, S., & Bartoszek, A. (2020). Interactions between bioactive components determine antioxidant, cytotoxic and nutrigenomic activity of cocoa powder extract. Free Radical Biology and Medicine, 154, 48–61. https://doi.org/10.1016/j.freeradbiomed.2020.04.022

Cabrera-Ramírez, A. H., Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Morales-Sánchez, E., Campos-Vega, R., & Gaytán-Martínez, M. (2020). Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Research International, 134, 109234. https://doi.org/10.1016/j.foodres.2020.109234

Cinar, Z. Ö., Atanassova, M., Tumer, T. B., Caruso, G., Antika, G., Sharma, S., Sharifi-Rad, J., & Pezzani, R. (2021). Cocoa and cocoa bean shells role in human health: An updated review. Journal of Food Composition and Analysis, 103, 104115. https://doi.org/10.1016/j.jfca.2021.104115

Deng, J., Yang, H., Capanoglu, E., Cao, H., & Xiao, J. (2018). Technological aspects and stability of polyphenols. In Polyphenols: Properties, Recovery, and Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813572-3.00009-9

Domínguez-Pérez, L. A., Beltrán-Barrientos, L. M., González-Córdova, A. F., Hernández-Mendoza, A., & Vallejo-Cordoba, B. (2020). Artisanal cocoa bean fermentation: From cocoa bean proteins to bioactive peptides with potential health benefits. Journal of Functional Foods, 73, 104134. https://doi.org/10.1016/j.jff.2020.104134

Emami, S., Azadmard-Damirchi, S., Peighambardoust, S. H., Valizadeh, H., & Hesari, J. (2016). Liposomes as carrier vehicles for functional compounds in food sector. Journal of Experimental Nanoscience, 11(9), 737–759. https://doi.org/10.1080/17458080.2016.1148273

Gallo, M., Vinci, G., Graziani, G., De Simone, C., & Ferranti, P. (2013). The interaction of cocoa polyphenols with milk proteins studied by proteomic techniques. Food Research International, 54(1), 406–415. https://doi.org/10.1016/j.foodres.2013.07.011

Gao, Y., Xia, W., Shao, P., Wu, W., Chen, H., Fang, X., Mu, H., Xiao, J., & Gao, H. (2022). Impact of thermal processing on dietary flavonoids. Current Opinion in Food Science, 48, 100915. https://doi.org/10.1016/j.cofs.2022.100915

Go´sciniak, A., Eder, P., Walkowiak, J., & Cielecka-Piontek, J. (2022). Artificial gastrointestinal models for nutraceuticals research — achievements and challenges : A Practical Review. Nutrients, 14(13), 2560. https://doi.org/10.3390/nu14132560

Gonzales, G. B., Smagghe, G., Grootaert, C., Zotti, M., Raes, K., & Camp, J. Van. (2015). Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews, 47(2), 175–190. https://doi.org/10.3109/03602532.2014.1003649

Günal-Köroğlu, D., Lorenzo, J. M., & Capanoglu, E. (2023). Plant-based protein-phenolic interactions: effect on different matrices and in vitro gastrointestinal digestion. Food Research International, 173, 113269. https://doi.org/10.1016/j.foodres.2023.113269

Halim, J. M., R. Pokatong, W. D., & Ignacia, J. (2013). Antioxidative characteristics of beverages made from a mixture of lemongrass extract and green tea. Jurnal Teknologi dan Industri Pangan, 24(2), 215–221. https://doi.org/10.6066/jtip.2013.24.2.215

Haliza, W., Purwani, E. Y., Fardiaz, D., & Suhartono, M. T. (2021). In vitro protein digestibility of enzymatically pre-treated cocoa bean powder using commercial protease. IOP Conference Series: Earth and Environmental Science, 828(1). https://doi.org/10.1088/1755-1315/828/1/012024

Hamzalioglu, A., Tagliamonte, S., Gökmen, V., & Vitaglione, P. (2023). Casein-phenol interactions occur during digestion and affect bioactive peptide and phenol bioaccessibility. Food and Function, 14(20), 9457–9469. https://doi.org/10.1039/d3fo02630b

He, Z., Tao, Y., Zeng, M., Zhang, S., Tao, G., Qin, F., & Chen, J. (2016). High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chemistry, 200, 107–116. https://doi.org/10.1016/j.foodchem.2016.01.045

Jakobek, L., Ištuk, J., Barron, A. R., & Mati, P. (2023). Bioactive phenolic compounds from apples during simulated in vitro gastrointestinal digestion : kinetics of their release. Applied Sciences, 13(14), 8434. https://doi.org/10.3390/app13148434

Kamiloglu, S., Capanoglu, E., Grootaert, C., & van Camp, J. (2015). Anthocyanin absorption and metabolism by human intestinal Caco-2 cells—A review. International Journal of Molecular Sciences, 16(9), 21555–21574. https://doi.org/10.3390/ijms160921555

Konishi, Y., Zhao, Z., & Shimizu, M. (2006). Phenolic acids are absorbed from the rat stomach with different absorption rates. Journal of Agricultural and Food Chemistry, 54(20), 7539–7543. https://doi.org/10.1021/jf061554

Laila, U., Nurhayati, R., Khasanah, Y., Herawati, E. R. N., & Wiyono, T. (2020). Preliminary study of cocoa powder’s polyphenol extraction by food grade solvent. IOP Conference Series: Earth and Environmental Science, 462(1). https://doi.org/10.1088/1755-1315/462/1/012037

Martín, M. A., & Ramos, S. (2016). Cocoa polyphenols in oxidative stress: Potential health implications. Journal of Functional Foods, 27, 570–588. https://doi.org/10.1016/J.JFF.2016.10.008

Martínez-Las Heras, R., Pinazo, A., Heredia, A., & Andrés, A. (2017). Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chemistry, 214, 478–485. https://doi.org/10.1016/j.foodchem.2016.07.104

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., MacIerzanka, A., MacKie, A., … Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, 5(6), 1113–1124. https://doi.org/10.1039/C3FO60702J

Ng-Kwai-Hang, K. F. (2011). Milk proteins: heterogeneity, fractionation, and isolation. In Encyclopedia of Dairy Sciences (Second Ed., pp. 751–764). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-374407-4.00429-5

Odriozola-Serrano, I., Nogueira, D. P., Esparza, I., Vaz, A. A., Jiménez-Moreno, N., Martín-Belloso, O., & Ancín-Azpilicueta, C. (2023). Stability and bioaccessibility of phenolic compounds in rosehip extracts during in vitro digestion. Antioxidants, 12(5), 1–17. https://doi.org/10.3390/antiox12051035

Oracz, J., Nebesny, E., & Żyżelewicz, D. (2015). Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different Theobroma cacao L. groups affected by roasting conditions. European Food Research and Technology, 241(5), 663–681. https://doi.org/10.1007/s00217-015-2494-y

Ortega, N., Macia, A., Romero, M., Reguant, J., Motilva, M. (2011). Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chemistry, 124, 65–71. https://doi.org/10.1016/j.foodchem.2019.02.101

Qie, X., Cheng, Y., Chen, Y., Zeng, M., Wang, Z., Qin, F., Chen, J., Li, W., & He, Z. (2022). In vitro phenolic bioaccessibility of coffee beverages with milk and soy subjected to thermal treatment and protein–phenolic interactions. Food Chemistry, 375, 131644. https://doi.org/10.1016/j.foodchem.2021.131644

Qie, X., Wu, Y., Chen, Y., Liu, C., Zeng, M., Qin, F., Wang, Z., Chen, J., & He, Z. (2021). Competitive interactions among tea catechins, proteins, and digestive enzymes modulate in vitro protein digestibility, catechin bioaccessibility, and antioxidant activity of milk tea beverage model systems. Food Research International, 140, 110050. https://doi.org/10.1016/j.foodres.2020.110050

Quan, W., Qie, X., Chen, Y., Zeng, M., Qin, F., Chen, J., & He, Z. (2020). Effect of milk addition and processing on the antioxidant capacity and phenolic bioaccessibility of coffee by using an in vitro gastrointestinal digestion model. Food Chemistry, 308, 125598. https://doi.org/10.1016/j.foodchem.2019.125598

Rahman, M., Rahaman, S., Islam, R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, S., Ahmed, M., Das, R., Emran, T. Bin, & Uddin, S. (2022). Role of phenolic compounds in human disease: current. Molecules, 27(233), 1–36. https://doi.org/10.3390/molecules27010233

Razola-Díaz, M. del C., Aznar-Ramos, M. J., Verardo, V., Melgar-Locatelli, S., Castilla-Ortega, E., & Rodríguez-Pérez, C. (2023). Exploring the nutritional composition and bioactive compounds in different cocoa powders. Antioxidants, 12(3), 1–16. https://doi.org/10.3390/antiox12030716

Sahu, R., Mandal, S., Das, P., Ashraf, G. J., Dua, T. K., Paul, P., Nandi, G., & Khanra, R. (2023). The bioavailability, health advantages, extraction method, and distribution of free and bound phenolics of rice, wheat, and maize: A Review. Food Chemistry Advances, 3, 100484. https://doi.org/10.1016/j.focha.2023.100484

Sumbul, S., Ahmad, M. A., Asif, M., & Akhtar, M. (2011). Role of phenolic compounds in peptic ulcer : An overview. Journal of Pharmacy & BioAllied Sciences, 3(3), 361–368. https://doi.org/10.4103/0975-7406.84437

Tosif, M. M., Najda, A., Bains, A., Krishna, T. C., Chawla, P., Dyduch-Siemińska, M., Klepacka, J., & Kaushik, R. (2021). A comprehensive review on the interaction of milk protein concentrates with plant-based polyphenolics. International Journal of Molecular Sciences, 22(24), 13548. https://doi.org/10.3390/ijms222413548

Ulvia, B., Andarwulan, N., & Hunaefi, D. (2020). Profile of bioactive compounds and antioxidant capacity of Indonesian cocoa powder: a case of food processing authentication. Proceedings ofthe 2ndSEAFASTInternational Seminar (2nd SIS 2019) - Facing Future Challenges: Sustainable Food Safety, Quality and Nutrition, 97–105. https://doi.org/10.5220/0009977300970105

Urbańska, B., Derewiaka, D., Lenart, A., & Kowalska, J. (2019). Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. European Food Research and Technology, 245(10), 2101–2112. https://doi.org/10.1007/s00217-019-03333-w

Velderrain-Rodríguez, G. R., Palafox-Carlos, H., Wall-Medrano, A., Ayala-Zavala, J. F., Chen, C. Y. O., Robles-Sánchez, M., Astiazaran-García, H., Alvarez-Parrilla, E., & González-Aguilar, G. A. (2014). Phenolic compounds: Their Journey after Intake. Food and Function, 5(2), 189–197. https://doi.org/10.1039/C3FO60361J

Authors

Dwi Indah Permata Sari
Endang Prangdimurti
prangdimurti@apps.ipb.ac.id (Primary Contact)
Dias Indrasti
Sari, D. I. P., Prangdimurti, E., & Indrasti, D. (2025). Bioaksesibilitas Senyawa Fenolik Minuman Kakao Pasteurisasi dengan Penambahan Matriks Susu. Jurnal Teknologi Dan Industri Pangan, 36(1), 28-39. https://doi.org/10.6066/jtip.2025.36.1.28
Copyright and license info is not available

Article Details

How to Cite

Sari, D. I. P., Prangdimurti, E., & Indrasti, D. (2025). Bioaksesibilitas Senyawa Fenolik Minuman Kakao Pasteurisasi dengan Penambahan Matriks Susu. Jurnal Teknologi Dan Industri Pangan, 36(1), 28-39. https://doi.org/10.6066/jtip.2025.36.1.28