Optimasi Breakfast Meal Flakes Berbasis Tepung Jali Termodifikasi

Lufi Karisma Rahmawati(1) , Tjahja Muhandri(2) , Ade Chandra Iwansyah(3) , Nurheni Sri Palupi(4) , Karsi Ambarwati(5)
(1) Program Studi Ilmu Pangan, Sekolah Pascasarjana, IPB University, Bogor, Indonesia,
(2) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia. South-East Asia Food & Agricultural Science and Technology (SEAFAST) Center, IPB University, Bogor, Indonesia,
(3) Pusat Riset Teknologi dan Proses Pangan, Badan Riset dan Inovasi Nasional, Yogyakarta, Indonesia,
(4) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(5) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia

Abstract

Jali (Coix lacryma-jobi L.) is a promising food crop in Indonesia, but its contribution to food security needs more improvement. This research aimed to analyze physico-chemical characteristics of native jali flour and its modified flour after treated by heat moisture treatment (HMT) and autoclaving-cooling (AC) method, and finally observe their effects on breakfast meal flakes (BMF). Both native and treated flour were analyzed for degree of whiteness, swelling power, solubility, water absorption index (WAI), water holding capacity (WHC), and gelatinization profile. HMT-modified jali flour exhibited solubility of 7.77%, gelatinization temperature of 74.95 °C, and peak viscosity of 3255 cP while amylose and resistant starch content reached 20.50% and 6.27%, respectively. Meanwhile, AC-modified jali flour showed lower solubility (4.13%), higher gelatinization temperature (76.15 °C), peak viscosity of 3220 cP, with amylose content of 22.30% and significantly higher resistant starch content (13.93%). Due to its superior resistant starch content, AC-modified Jali flour was selected for BMF formulation. The formulation was optimized through D-optimal with independent variables of 50100% jali flour and 050% sorghum flour. As a result, the optimum formulation was obtained with a desirability value of 0.713, consisted of 100% jali flour without added sorghum flour. The optimized BMF had resistant starch 11.46%, rehydration capacity 58.48%, and hardness 415.12 gf. The product has the potential to diversify healthy breakfast options for community and may contribute to diabetes prevention.

Full text article

Generated from XML file

References

Agustina, Faridah, D. N., & Jenie, B. S. L. (2016). Pengaruh retrogradasi dan perlakuan kelem-baban panas terhadap kadar pati resisten tipe III Daluga. Jurnal Teknologi dan Industri Pangan, 27(1), 78–86. https://doi.org/10.6066/jtip.2016.27.1.78

Aini, N., Dewi, S., Asyifa, S. N., & Sofyan, A. (2021). The utilization of resistant starch in aking rice flour as anti-diabetic food ingredients. Proceedings of the International Summit on Science Technology and Humanity (ISETH) 2020: Health and Well-Being, 5, 27–34.

[AOAC] Association of Official Analytical Chemist. (2012). Official Method of Analytical of the Association of Official Analytical Chemist. Washington DC (US): AOAC International.

Ariyantoro, A. R., Amanto, B. S., & Kiswuri. (2020). Effect of heat moisture treatment (HMT) on physicochemical charasteristics of sorghum flour (Sorghum bicolor L. moench). IOP Conference Series: Earth and Environmental Science, 518(1), 012067. https://doi.org/10.1088/1755-1315/518/1/012067

Ashwar B. A., Gani, A., Wani, I. A., Shah, A., Masoodi, F. A., & Saxena, D. C. (2016). Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization. Food Hydrocolloids, 56(19), 1–24. https://doi.org/10.1016/j.foodhyd.2015.12.004

Baby, L., Suman, K. T., Krishnan, S., & Indira, V. (2016). Effect of autoclaving and cooling on resistant starch formation in rice starch. Journal of Dairying, Foods & Home Sciences, 35(2), 137–142. https://doi/10.18805/ajdfr.v35i2.10722

Bukhori, J. A., Karim, A., & Hariyadi, P. (2019). Pengaruh teknik pengolahan terhadap karakteristik kimia dan swelling power pada tapioka yang dihasilkan. Prosiding Seminar Nasional II Hasil Litbangyasa Industri (hlm. 142–148).

Chen, X., He, X., Fu, X., & Huang, Q. (2015). In vitro digestion and physicochemical properties of wheat starch/flour modified by heat moisture treatment. Journal of Cereal Science, 63, 109–115. https://doi.org/10.1016/j.jcs.2015.03.003

Colque, R. J. B., Barreto, F. I. R., Solórzano, J. W. V., Arévalo, A. M., & Ascheri, J. L. R. (2023). Physicochemical properties of extrudate-based flakes from whole banana flour and rice flour blends. Brazilian Journal of Food Technology, 26, 1–13. https://doi.org/10.1590/1981-6723.02923

Daniels, E., Wulandari, N., & Faridah, D. N. (2023). Glycemic index of sweet corn and the characteristics of their flakes by adding the red bean. Jurnal Teknologi dan Industri Pangan, 34(2), 233–241. https://doi.org/10.6066/jtip.2023.34.2.233

Dayu, P. V., & Dyna, F. (2019). Standarisasi ganyong (Canna edulis ker) sebagai pangan alternatif pasien diabetes mellitus. Jurnal Katalisator, 4(2), 111–118. https://doi.org/10.22216/jk.v4i2.4567

Dudu, O. E., Oyedeji, A. B., Oyeyinka, S. A., & Ma, Y. (2019). Impact of steam heat moisture treatment on structural and functional properties of cassava flour and starch. International Journal of Biological Macromolecus, 126, 1056–1064. https://doi.org/10.1016/j.ijbiomac.2018.12.210

Ee, K. Y., Eng, M. K., & Lee, L. M. (2020). Physicochemical, thermal and rheological properties of commercial wheat flours and corresponding starches. Food Science and Technology, 40(Suppl. 1), 51–59. https://doi.org/10.1590/fst.39718

Ega, L., & Lopulalan, C. G. C. (2015). Modifikasi pati sagu dengan metode heat moisture treatment. Agritekno, Jurnal Teknologi Pertanian, 4(2), 33–40. https://doi.org/10.30598/jagritekno.2015.4.2.33

Fang, G., Liu, K., & Gao, Q. (2023). Effects of heat moisture treatment on the digestibility and physicochemical properties of waxy and normal potato starches. Foods, 12(1), 68. https://doi.org/10.3390/foods12010068

Faozi, I., Karseno, K., & Handayani, I. (2023). Kombinasi fermentasi bakteri asam laktat dan pemanasan bertekanan-pendinginan dalam pembentukan pati resisten tepung talas beneng (Xanthosoma undipes K. Koch). Jurnal Ilmu Pertanian Indonesia, 28(2), 255–264. https://doi.org/10.18343/jipi.28.2.255

Faridah, D. N., Damaiyanti, S., Indrasti, D., Jayanegara, A., & Afandi, F. A. (2022a). Effect of heat moisture treatment on resistant starch content among carbohydrate sources: a meta-analysis. International Journal of Food Science Technology, 57(4), 1965–1974. https://doi.org/10.1111/ijfs.15276

Faridah, D. N., Silitonga, R. F., Indrasti, D., Afandi, F. A., Jayanegara, A., & Anugerah, M. P. (2022b). Verification of autoclaving-cooling treatment to increase the resistant starch contents in food starches based on meta-analysis result. Frontiers in Nutrition, 9, 1–15. https://doi.org/10.3389/fnut.2022.904700

Fonseca, L. M., Halal, S. L. M., Dias, A. R. G., & Zavareze, E. R. (2021). Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydrate Polymers, 274, 118665. https://doi.org/10.1016/j.carbpol.2021.118665

Gallagher, E., McCarthy, D., Gormley, T. R., & Arendt, E. (2004). Improving the quality of gluten-free products. Agriculture and Food Development Authory. Teagasc.

Goel, C., Semwal, A. D., Khan, A., Kumar, S., & Sharma, G. K. (2020). Physical modification of starch: Changes in glycemic index, starch fractions, physicochemical and functional properties of heatmoisture treated buckwheat starch. Journal of Food Science and Technology, 57(8), 2941–2948. https://doi.org/10.1007/s13197-020-04326-4

Hamidah, N., Legowo, A. M., & Anwar, S. (2019). Kualitas sensori, ukuran pori, indeks glikemik, dan beban glikemik roti tawar substitusi tepung singkong (Manihot esculenta) dan tepung tempe. Media Gizi Indonesia, 14(2), 154–163. https://doi.org/10.20473/mgi.v14i2.154-163

Herawati, E. R., Ariani, D., Nurhayati, R., Miftakhussolikhah, M., Na’imah, H., & Marsono, Y. (2020). Effect of autoclaving-cooling treatments on chemical characteristic and structure of tacca (Tacca leontopetaloides) starch. Proceedings of the 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019) (hlm. 169–172). https://doi.org/10.2991/aer.k.200325.034

Herverlly, Garnida, Y., & Nastiti, A. G. (2020). Karakteristik flakes yang dihasilkan dari tepung hanjeli (Coix lacryma jobi L.) termodifikasi dengan metode heat moisture treatment. Pasundan Food Technology Journal, 7(1), 33–37. https://doi.org/10.23969/pftj.v7i1.2693

Irhami, Anwar, C., & Kemalawaty, M. (2019). Karakteristik sifat fisikokimia pati ubi jalar dengan mengkaji jenis varietas dan suhu pengeringan. Jurnal Teknologi Pertanian, 20(1), 33–44. https://doi.org/10.21776/ub.jtp.2019.020.01.4

Kim, N. H., Kim, J. H., Lee, S., Lee, H., Yoon, J. W., Wang, R., & Yoo, S. H. (2010). Combined effect of autoclaving-cooling and crosslinking treatments of normal corn starch on the resistant starch formation and physicochemical properties. Starch-Stärke, 62(7), 358–363. https://doi.org/10.1002/star.200900237

Lemmens, E., Deleu, L. J., Brier, N. D., Smolders, E., & Delcour, J. A. (2021). Mineral bio-accessibility and intrinsic saccharides in breakfast flakes manufactured from sprouted wheat. LWT, 143, 111079. https://doi.org/10.1016/j.lwt.2021.111079

Li, X., Zhang, X., Yang, W., Guo, L., Huang, L., Li, X., & Gao, W. (2021). Preparation and characterization of native and autoclaving-cooling treated pinellia ternate starch and its impact on gut microbiota. International Journal of Biological Macromolecules, 182, 1351–1361. https://doi.org/10.1016/j.ijbiomac.2021.05.077

Marta, H., Cahyana, Y., Bintang, S., Soeherman, G. P., & Djali, M. (2022). Physicochemical and pasting properties of corn starch as affected by hydrothermal modification by various methods. International Journal of Food Properties, 25(1), 792–812. https://doi.org/10.1080/10942912.2022.2064490

Masyitha, N. F., Mahdiyah, & Efrina, E. (2021). Pengaruh subtitusi pangan lokal hanjeli (Coix lacryma jobi L.) terhadap daya terima fettuccine sukun. Jurnal Pendidikan Tata Boga dan Teknologi, 2(2), 123–128. https://doi.org/10.24036/jptbt.v2i2.190

Muliani, D., Sartono, S., & Yulianto, Y. (2023). Daya terima flakes tepung jagung sebagai makanan seligan tinggi serat. Jurnal Gizi dan Kesehatan, 3(1), 1–11. https://doi.org/10.36086/jgk.v3i1.1580

Novita, D., Hasbullah, U. H. A., Nurdyansyah, F., & Muflihati, I. (2023). Modifikasi fisik tepung suweg (Amorphophallus campanulatus) dengan iradiasi sinar ultraviolet C (UV–C) dan heat moisture treatment (HMT). Agrointek Jurnal Teknologi Industri Pertanian, 17(1), 182–192. https://doi.org/10.21107/agrointek.v17i2.13555

Nuriana, A., Aini, N., & Karseno, K. (2019). Formulasi breakfast meal flakes dari tepung suweg dan stabilized rice bran menggunakan metode respon permukaan. Jurnal Aplikasi Teknologi Pangan, 8(2), 52–59. https://doi.org/10.17728/jatp.3952

Onyango, C., Mewa, E. A., Mutahi, A. W., & Okoth, M. W. (2013). Effect of heat-moisture-treated cassava starch and amaranth malt on the quality of sorghum-cassava-amaranth bread. African Journal of Food Science, 7(5), 80–86. https://doi.org/10.5897/AJFS2012.0612

Parwiyanti, Pratama, F., Wijaya, A., & Malahayati, N. 2016. Profil pasting pati ganyong termodifikasi dengan heat moisture treatment dan gum xanthan untuk produk roti. Jurnal Teknologi dan Industri Pangan, 27(2), 185–192. https://doi.org/10.6066/jtip.2016.27.2.185

Permana, R. A., & Putri, W. D. R. (2015). Pengaruh proporsi jagung dan kacang merah serta substitusi bekatul terhadap karakteristik fisik kimia flakes. Jurnal Pangan dan Agroindustri 3(2), 734–742.

Putra, L. O., Suharti, S., Sarwono, K. A., Sutikno, S., Fitri, A., Astuti, W. D., Rohmatussolihat, R., Widyastuti, Y., Ridwan, R., & Fidriyanto, R. (2023). The effects of heat-moisture treatment on resistant starch levels in cassava and on fermentation, methanogenesis, and microbial populations in ruminants. Veterinary World, 16(4), 811–819. https://doi.org/10.14202/vetworld.2023.811-819

Rasyda, R. Z., Muhandri, T., & Budijanto, S. (2020). Profil gelatinisasi dan komponen antioksidan tepung ketan hitam termodifikasi dengan annealing. Jurnal Teknologi dan Industri Pangan, 31(2), 164–170. https://doi.org/10.6066/jtip.2020.31.2.164

Setiarto, R. H. B., Widhyastuti, N., & Sumariyadi, D. A. (2018). Peningkatan kadar pati resisten tipe III tepung singkong termodifikasi melalui fermentasi dan pemanasan bertekanan-pendinginan. Biopropal Industri, 9(1), 9–23.

Silitonga, R. F., Faridah, D. N., Indrasti, D., Afandi, F. A., & Jayanegara, A. (2021). Kadar pati resisten pangan tinggi karbohidrat hasil autoclaving-cooling 2 siklus: studi meta-analisis. Warta IHP/Journal of Agro-based Industry, 38(1), 79–88. https://doi.org/10.32765/wartaihp.v38i1.6987

Silva, D. J. S., Hashimoto, J. M., Nabeshima, E. H., Salgado, R. T., Freitas, T. K. T., & Silva, K. J. D. (2021). Correlation between the rheological and technological properties of biscuits with different levels of replacement of wheat flour by rice and azuki bean flour. International Journal of Food Science Technology, 56(10), 5190–5200. https://doi.org/10.1111/ijfs.15312

Soeka, S. Y., & Sulistiani. (2017). Profil vitamin, kalsium, asam amino, dan asam lemak tepung jewawut (Setaria italica L.) fermentasi. Jurnal Biologi Indonesia, 13(1), 85–96. https://doi.org/10.47349/jbi/13012017/83

Subroto, E., Indiarto, R., Marta, H., & Shalihah, S. (2019). Effect of heat moisture treatment on functional and pasting properties of potato (Solanum tuberosum L. var. Granola) starch. Food Research, 3(5), 469–476. https://doi.org/10.26656/fr.2017.3(5).110

Syafutri, M. I., Syaiful, F., Lidiasari, E., & Pusvita, D. (2020). Pengaruh lama dan suhu pengeringan terhadap karakteristik fisikokimia tepung beras merah (Oryza nivara). Agrosaintek: Jurnal Ilmu dan Teknologi Pertanian, 4(2), 103–111. https://doi.org/10.33019/agrosainstek.v4i2.120

Tamrin, T., Putri, C., Rahmawati, W., & Kuncoro, S. (2023). Mempelajari pengaruh suhu dan jenis jeroan terhadap mutu tepung jeroan. Agricultural Biosystem Engineering, 2(4), 554–563. https://doi.org/10.23960/jabe.v2i4.8398

Wang, M., Sun, M., Zhang, Y., Chen, Y., Wu, Y., & Ouyang, J. (2019). Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity. Food Chemistry, 298, 125015. https://doi.org/10.1016/j.foodchem.2019.125015

Xiang, G., Li, J., Lin, Q., Zhang, Y., Ding, Y., Guo, X., Pan, Q., Liu, Q., Fu, X., Yang, Y., & Han, W., Fang, Y. (2023). The effect of heat–moisture treatment changed the binding of starch, protein and lipid in rice flour to affect its hierarchical structure and physicochemical properties. Food Chemistry: X, 19, 100785. https://doi.org/10.1016/j.fochx.2023.100785

Yadav, B. S., Sharma, A., & Yadav, R. B. (2009). Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. International Journal of Food Sciences and Nutrition, 60(Suppl. 4), 258–272. https://doi.org/10.1080/09637480902970975

Yuliwardi, F., Syamsir, E., Hariyadi, P., & Widowati, S. (2014). Effects of two-cycle autoclaving-cooling on resistant starch content of rice flour and the resulted rice noodle. Jurnal Pangan, 23(1), 43–51.

Zhang, C., Du, M., Cao, T., & Xu. W. (2023). The effect of acetylation on the physicochemical properties of chickpea starch. Foods, 12(13), 2462. https://doi.org/10.3390/foods12132462

Zheng, M. Z., Xiao, Y., Yang, S., Liu, H. M., Liu, M. H., Yaqoob, S., Xu, X. Y., & Liu, J. S. (2020). Effects of heat–moisture, autoclaving, and microwave treatments on physicochemical properties of proso millet starch. Food Science & Nutrition, 8(2), 735–743. https://doi.org/10.1002/fsn3.1295

Authors

Lufi Karisma Rahmawati
Tjahja Muhandri
tjahjamuhandri@apps.ipb.ac.id (Primary Contact)
Ade Chandra Iwansyah
Nurheni Sri Palupi
Karsi Ambarwati
Rahmawati, L. K., Muhandri, T., Iwansyah, A. C., Palupi, N. S., & Ambarwati, K. (2025). Optimasi Breakfast Meal Flakes Berbasis Tepung Jali Termodifikasi. Jurnal Teknologi Dan Industri Pangan, 36(1), 13-27. https://doi.org/10.6066/jtip.2025.36.1.13
Copyright and license info is not available

Article Details

How to Cite

Rahmawati, L. K., Muhandri, T., Iwansyah, A. C., Palupi, N. S., & Ambarwati, K. (2025). Optimasi Breakfast Meal Flakes Berbasis Tepung Jali Termodifikasi. Jurnal Teknologi Dan Industri Pangan, 36(1), 13-27. https://doi.org/10.6066/jtip.2025.36.1.13