Profil Metabolit Volatil dan Non Volatil Bangle Hitam

Ning Ima Arie Wardayanie(1) , Endang Prangdimurti(2) , Dase Hunaefi(3) , Irmanida Batubara(4) , Fitra Tunnisa (5) , Dian Rosalina(6) , Ani Afriyanti (7) , Nancy Dewi Yuliana (8)
(1) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia. Balai Besar Standardisasi dan Pelayanan Jasa Industri Agro, Kementerian Perindustrian, Bogor, Indonesia,
(2) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(3) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(4) Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, IPB University, Bogor, Indonesia. Pusat Studi Biofarmaka Tropika, IPB University, Bogor, Indonesia,
(5) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(6) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(7) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(8) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia

Abstract

The study discovering chemical compounds of black bangle (Zingiber ottensii Val.), which is a member of Zingiberaceae family, is rather scarce. This research aimed to determine the composition of volatile dan non-volatile compounds of the rhizome. The volatile compound was analyzed using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS), while non-volatile compound was determined by Ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). The experiment by SPME GC-MS successfully identified 31 compounds with monoterpenes showing the most abundant group at 54 %. The main volatile compounds are β-Phellandrene, β-pinene, γ-Terpinene and α-pinene, then followed by sesquiterpene and terpene, namely humulene and terpinen-4-ol, respectively. Furthermore, analysis using UHPLC-HRMS detected 37 compounds with some pre dominant compounds, i.e. zerumbone, choline, isoleucine, phenylalanine, afzelin and malic acid. These findings indicate that black bangle rhizome is rich in various volatile and non-volatile compounds, especially terpenoid, flavonoid, amino acid and malic acid, some of which have certain bioactivities.

Full text article

Generated from XML file

References

Agüera, A., Martínez-Piernas, A. B., & Campos-Mañas, M. C. (2017). Chapter 3 - Analytical strategies used in HRMS. In Applications in high resolution mass spectrometry, (pp. 59–82). Elsevier. https://doi.org/10.1016/B978-0-12-809464-8.00003-8

Ajish, K. R., Antu, K. A., Riya, M. P., Preetharani, M. R., Raghu, K. G., Dhanya, B. P., & Radhakrishnan, K. V. (2015). Studies on α-glucosidase, aldose reductase and glycation inhibitory properties of sesquiterpenes and flavonoids of Zingiber zerumbet Smith. Natural Product Research, 29(10), 947–952. https://doi.org/10.1080/14786419.2014.956741

Akiyama, K., Kikuzaki, H., Aoki, T., Okuda, A., Lajis, N. H., & Nakatani, N. (2006). Terpenoids and a diarylheptanoid from Zingiber ottensii. Journal of Natural Products, 69(11), 1637–1640. https://doi.org/10.1021/np0603119

Barbosa, G. B., Jayasinghe, N. S., Natera, S. H. A., Inutan, E. D., Peteros, N. P., & Roessner, U. (2017). From common to rare Zingiberaceae plants-A metabolomics study using GC-MS. Phytochemistry, 140, 141–150. https://doi.org/10.1016/j.phytochem.2017.05.002

Calderon-Montano, J. M., Burgos-Morón, E., Pérez-Guerrero, C., & López-Lázaro, M. (2011). A review on the dietary flavonoid kaempferol. Mini-Reviews in Medicinal Chemistry, 11(4), 298–344. https://doi.org/10.2174/138955711795305335

Campelo, P. H., Filho, E. G. A., Silva L. M. A., de Brito, E. S., Rodrigues, S., & Fernandes, F. A. N. (2020). Modulation of aroma and flavor using dielectric barrier discharge plasma technology in a juice rich in terpenes and sesquiterpe-nes. LWT, 130, 109644. https://doi.org/10.1016/j.lwt.2020.109644

Chen, T. V., Boonma, T., & Hien, N. T. T. (2025). An overview of the chemical compositions and biological activities of essential oils from selected Zingiber species (Zingiberaceae). Natural Product Communications, 20(3). https://doi.org/10.1177/1934578X251329422

Chumroenphat, T., Somboonwatthanaku, I., Saensouk, S., & Siriamornpun, S. (2019). The diversity of biologically active compounds in the rhizomes of recently discovered Zingiberaceae plants native to North Eastern Thailand. Pharmacognosy Journal, 11(5), 1014–1022. https://doi.org/10.5530/pj.2019.11.160

Devkota, H. P., Paudel, K. R., Hassan, M. M., Dirar, A. I., Das, N., Adhikari-Devkota, A., Echeverría, J., Logesh, R., Jha, N. K., Singh, S. K., Hansbro, P. M., Chan, Y., Chellappan, D. K., & Dua, K. (2021). Bioactive compounds from Zingiber montanum and their pharmacological activities with focus on zerumbone. Applied Science, 11(21), 102025. https://doi.org/10.3390/app112110205

Etemadi-Tajbakhsh, N., Faramarzi, M. A., & Delnavazi, M. R. (2020). 1, 5-dicaffeoylquinic acid, an α-glucosidase inhibitor from the root of Dorema ammoniacum D. Don. Research in Pharmaceutical Sciences, 15(5), 429–436. https://doi.org/10.4103/1735-5362.297845

Girisa, S., Shabnam, B., Monisha, J., Fan, L., Halim, C. E., Arfuso, F., Ahn, K. S., Sethi, G., & Kunnumakkara, A. B. (2019). Potential of zerumbone as an anti-cancer agent. Molecules, 24(4), 734. https://doi.org/10.3390/molecules24040734

Gururani, S., Gairola, K., Kumar, R., Prakash, O., & Dubey, S. K. (2022). Altitudinal and geographical variations in phytochemical composition and biological activities of Curcuma longa accession from Uttarakhand, the Himalayan region. Journal of Food Processing and Preservation, 46(3), 16384. https://doi.org/10.1111/jfpp.16384

Hassan, M. M., Adhikari-Devkota, A., Imai, T., & Devkota, H. P. (2019). Zerumbone and kaempferol derivatives from the rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations, 6(2), 31. https://doi.org/10.3390/separations6020031

Hilfiger, L., Triaux, Z., Marcic, C., Héberlé, E., Emhemmed, F., Darbon, P., Marchioni, E., Petitjean, H., & Charlet, A. (2021). Anti-hyperalgesic properties of menthol and pulegone. Frontiers in Pharmacology, 12(2021), 753873. https://doi.org/10.3389/fphar.2021.753873

Hong, K., Xu, Z., Wang, L., Johnpaul, A., Cheng, Y., Lv, C., & Ma, C. (2022). Varietal differences in the phytochemical components’ accumulation and aroma profile of three Humulus lupulus cultivars. Food Control, 132, 108499. https://doi.org/10.1016/j.foodcont.2021.108499

Huang, B., Wang, G., Chu, Z., & Qin, L. (2012). Effect of oven drying, microwave drying, and silica gel drying methods on the volatile components of ginger (Zingiber officinale Roscoe) by HS-SPME-GC-MS. Drying Technology, 30(3), 248–255. https://doi.org/10.1080/07373937.2011.634976

Huong, L. T., Chung, N. T., Huong, T. T., Sam, L. N., Hung, N. H., Ogunwande, I. A., Dai, D. N., Linh, L. D., & Setzer, W. N. (2020). Essential oils of Zingiber species from Vietnam: chemical compositions and biological activities. Plants, 9 (10), 1269. https://doi.org/10.3390/plants9101269

Imran, M., Salehi, B., Sharifi-Rad. J., Gondal, T. A., Saeed, F., Imran, A., Shahbaz, M., Fokou, P. V. T., Arshad, M. U., Khan, H., & Guerreiro, S. G., (2019). Kaempferol: A key emphasis to its anticancer potential. Molecules, 24(12), 2277. https://doi.org/10.3390/molecules24122277

Joguet, N., Jing, L., Jamois, F., & Dumargue, P. (2023). Characterization of volatile organic compounds (VOCs) from farms effluents: interest of HS-SPME-GC-MS technique for laboratory and field test. Atmosphere, 14(6), 928. https://doi.org/10.3390/atmos14060928

Juna’ia. (2019). Aktivitas antioksidan ekstrak dan fraksi rimpang bangle hantu (Zingiber ottensii) dengan menggunakan metode DPPH dan CUPRAC. [Laporan Tugas Akhir]. Bandung (ID): Universitas Bhakti Kencana.

Kang, D. H., Lee, Y. S., Oh, S. M., Yoon, D., Choi, D. J., Kwon, D. Y., Kang, O. H., & Lee, D. Y. (2020). Inhibitory effects of thymol isolated from Curcuma longa L. on Adipogenesis in HepG2 cells. Processes, 8(9), 1191. https://doi.org/10. 3390/pr8091191

Karakaya, S., Yilmaz, S. V., Özdemir, Ö., Koca, M., Pınar, N. M., Demirci, B., Yıldırım, K., Sytar, O., Turkez, H., & Baser, K. H. C. (2020). A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). Journal of Essential Oil Research, 32(6), 512–525. https://doi.org/10.1080/10412905.2020.1813212

Karnchanatat, A., Tiengburanatam, N., Boonmee, A., Puthong, S., & Sangvanich, P. (2011). Zingipain, a cysteine protease from Zingiber ottensii Valeton rhizomes with antiproliferative activities against fungi and human malignant cell lines. Preparative Biochemistry & Biotechnology, 41(2), 138–153. https://doi.org/10.1080/10826068.2011.547347

Katrolia, A., Pal, V., Shukla, V. K., & Singh, R. (2024). Exploring the therapeutic potential of herbal plants in managing blood sugar levels: a comprehensive evaluation. Pharmacognosy Research, 16(1), 10–18. https://doi.org/10.5530/pres.16.1.2

Li, W., Wu, B., Wang, Y., Lin, Y., An, L., & Zhang, G. (2021). The potential antioxidant activity and characterization of bioactive compounds of Stahlianthus involucratus. BioMed Research International, 2021(1), 949012. https://doi.org/10.1155/2021/9490162

Ly, S. N, Truong, V. B., & Huong, L. T. (2016). Zingiber ottensii Valeton (Zingiberaceae) ― a newly recorded species for Vietnam. Bioscience Discovery, 7(2), 93–96.

Mediani, A., Hamezah, H. S., Rohani, E. R., Kamal, N., Perumal, V., Salim, F., Rozlan, I. N., Hellal, K., Mahmood, S., & Al-Mekhlafi, N. A. (2023). Afzelin: advances on resources, biosynthesis pathway, bioavailability, bioactivity, and pharmacology. In Handbook of Dietary Flavonoids, 1–45. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-94753-8_63-1

Muhandri, T., Subarna, Agista, A. Z., Hariyadi, P., & Aminullah. (2019). Optimization of drying process of corn noodles using fluidized bed dryer. Science Study & Research: Chemistry & Chemistry Engineering, Biotechnology, Food Industry, 20(1), 43–52.

Muhandri, T., Taqi, F. M., Subarna, S., & Widiawati, D. (2023). Karakteristik pengeringan rempah daun menggunakan fluidized bed drier dan tray drier. Jurnal Teknologi dan Industri Pangan, 34(2), 187–199. https://doi.org/10.6066/jtip. 2023.34.2.187

Murata, K., Ishida, Y., Nishio, A., Nakagawa, S., Kawamoto, H., & Matsuda, H. (2017). Screening of spice extracts possessing anti-acetylcholinesterase activity and active principle of bitter ginger, rhizome of Zingiber zerumbet. Natural Product Communications, 12(7), 1053–1056. https://doi.org/10.1177/1934578X1701200713

Pan, D., Li, N., Liu, Y., Xu, Q., Liu, Q., You, Y., Wei, Z., Jiang, Y., Liu, M., Guo, T., & Cai, X. (2008). Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. International Immunopharmacology, 55, 174–182. https://doi.org/10.1016/j.intimp.2017.12.011

Pang, X., Cao, J., Wang, D., Qiu, J., & Kong, F. (2017). Identification of ginger (Zingiber officinale Roscoe) volatiles and localization of aroma-active constituents by GC–Olfactometry. Journal of Agricultural and Food Chemistry, 65 (20), 4140–4145. https://doi.org/10.1021/acs. jafc.7b00559

Pant, P., Pandey, S., & Dall'Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry & Biodiversity, 8(11), e2100345. https://doi.org/10.1002/cbdv.202100345

Paramita, A., Wibowo, I., & Insanu, M. (2021). A study of genus Zingiber: The role of condiments in science. Current Research on Biosciences and Biotechnology, 3(1), 186–195. https://doi.org/10.5614/crbb.2021.3.1/CKHEYSRT

Ren, J. I., Lu, Y., Qian, Y., Chen, B., Wu, T. A., & Ji, G. (2019). Recent progress regarding kaempferol for the treatment of various diseases. Experimental and Therapeutic Medicine, 18(4), 2759–2776. https://doi.org/10.3892/etm.2019.7886

Rosalina, D., Yuliana, N. D., Anggraeni, R., & Prangdimurti, E., (2023). Immunostimulant compounds identification in Indonesian underutilized Zingiberaceae spices. Molekul, 18(3), 508–523. https://doi.org/10.20884/1.jm.2023.18.3.7589

Schepetkin, I. A., Özek, G., Özek, T., Kirpotina, L. N., Khlebnikov, A. I., Klein, R. A., & Quinn, M. T. (2022). Neutrophil immunomodulatory activity of farnesene, a component of Artemisia dracunculus essential oils. Phamaceuticals, 15(5), 642. https://doi.org/10.3390/ph15050642

Setiawati, A. (2020). Pengaruh kombinasi simplisia rimpang bangle hitam (Zingiber ottensii Val) dengan simplisia daun katuk (Sauropus androgynus l. Merr) terhadap tekanan darah pada tikus wistar jantan obes. [Laporan Tugas Akhir]. Bandung (ID): Universitas Bhakti Kencana.

Shen, D. Y., Li, M. K., Song, H. L., Zou, T. T., Zhang, L., & Xiong, J. (2021). Characterization of aroma in response surface optimized no-salt bovine bone protein extract by switchable GC/GC× GC-olfactometry-mass spectrometry, electronic nose, and sensory evaluation. LWT, 147, 111559. https://doi.org/10.1016/j.lwt.2021.111559

Sinaga, E., Suprihatin, & Wiryanti, I. (2013). Anticancer Activity of Bangle Hantu (Zingiber ottensii Val.) Rhizomes on Breast cancer Cell Line MCF-7. Proceeding of The 4th International Conference Green Technology, 9 November 2013, Indonesia. 86–92.

Sommano, S. R., & Tangpao, T. (2021). Aromatic profile of rhizomes from the ginger family used in food. In Aromatic Herbs in Food. 123–165. Academic Press. https://doi.org/10.1016/B978-0-12-822716-9.00004-4

Sulaeman, A., Patonah, & Negara, G. G. (2018). Black bangle (Zingiber ottensii Val.) rhizome and katuk leaves (Sauropus androgynus L. Merr.) extract combination protective role on adipose tissues histologic profile of high-fat and carbohydrate diet-induced obese male rats. Asian Journal Pharmaceutical and Clinical Research, 11(1), 225–228. https://doi.org/10.22159/ajpcr.2018.v11s1.26613

Suprihatin, Wiryanti, I., Syairendra, F., & Sinaga, E. (2020). Potensi ekstrak rimpang bangle hantu (Zingiber ottensii) sebagai bahan nefroprotektif. Kalwedo Science (KASA), 1(1), 10–19 https://doi.org/10.30598/kasav1i1p10-19

Tian, H., Xu, X., Chen, C., & Yu, H. (2019). Flavoromics approach to identifying the key aroma compounds in traditional Chinese milk fan. Journal of Dairy Science, 102(11), 9639–9650. https://doi.org/10.3168/jds.2019-16796

Tiengburanatam, N., Boonmee, A., Sangvanich, P., & Karnchanatat, A. (2010). A novel α-glucosidase inhibitor protein from the rhizomes of Zingiber ottensii Valeton. Applied Biochemistry and Biotechnology, 162(7), 1938–1951. https://doi.org/10.1007/s12010-010-8971-7

Tran, G. H., Lee, H. D., Kim, S. H., Lee, S., & Lee, S. (2023). Profiling of the leaves and stems of Curcuma longa using LC-ESI-MS and HPLC analysis. Journal of Applied Biological Chemistry, 66(1), 338–344. https://doi.org/10.3839/jabc.2023.046

Tsai, M. S., Wang, Y. H., Lai, Y. Y., Tsou, H. K., Liou, G. G., Ko, J. L., & Wang, S. H. (2018). Kaempferol protects against propacetamol induced acute liver injury through CYP2E1 inactivation, UGT1A1 activation and attenuation of oxidative stress, inflammation and apoptosis in mice. Toxicology Letters, 290, 97–109. https://doi.org/10.1016/j.toxlet.2018.03.024

Tunnisa, F., Faridah, D. N., Afriyanti, A., Rosalina, D., Syabana, M. A., Darmawan, N., & Yuliana, N. D. (2022). Antioxidant and antidiabetic compounds identification in several Indonesian underutilized Zingiberaceae spices using SPME-GC/MS-based volatilomics and in silico methods. Food Chemistry: X, 14, 100285. https://doi.org/10.1016/j.fochx.2022.100285

Utami, M. R., Prihastanti, E., & Suedy, S. W. (2016). Pengaruh irisan rimpang terhadap berat kering dan performa simplisia lempuyang wangi (Zingiber aromaticum Val.) setelah pengeringan. Buletin Anatomi dan Fisiologi, 1(1), 1–5. https://doi.org/10.14710/baf.1.1.2016. 1-5

Wall, M. M., Mille, S., & Siderhurst, M. S. (2018). Volatile changes in Hawaiian noni fruit, Morinda citrifolia L., during ripening and fermentation. Journal of the Science of Food and Agriculture, 98(9), 3391–3399. https://doi.org/10.1002/jsfa.8850

Wang, Z., Su, D., Ren, H., Lv, Q., Ren, L., Li, Y., & Zhou, H. (2022). Effect of different drying methods after fermentation on the aroma of Pu-erh tea (ripe tea). LWT, 171, 114129. https://doi. org/10.1016/j.lwt.2022.114129

Wood, M. (2019). High-resolution mass spectrometry: an emerging analytical method for drug testing. In Critical Issues in Alcohol and Drugs of Abuse Testing. 173–188. Academic Press. https://doi. org/10.1016/B978-0-12-815607-0.00014-9

Wu, Y., Xin, R., Liang, M., Zhang, Z., Guan, W., Wang, R, & Liu, Y. (2023). Investigation on the changes of odor-active compounds of Amomum tsao-ko during natural drying. Journal of Food Composition and Analysis, 122, 105432. https://doi.org/10.1016/j.jfca.2023.105432

Yashin, A., Yashin, Y., Xia, X., & Nemzer, B. (2017). Antioxidant activity of spices and their impact on human health: A review. Antioxidants, 6(3), 70. https://doi.org/10.3390/antiox6030070

Yuandani, Jantan, I., Haque, M. A., Rohani, A. S., Nugraha, S. E., Salim, E., Septama, A. W., Juwita, N. A., Khairunnisa, N. A., Nasution, H. R., & Utami, D. S. (2023). Immunomodulatory effects and mechanisms of the extracts and secondary compounds of Zingiber and Alpinia species: a review. Frontiers in pharmacology, 14, 1222195. https://doi.org/10.3389/fphar.2023.1222195

Yuliana, N. D., Arifin, A. S., & Rafi, M. (2020). Multiple spectroscopic fingerprinting platforms for rapid characterization of α-glucosidase inhibitors and antioxidants from some commonly consumed Indonesian vegetables and spices. Journal of Food Measurement and Characterization, 14(3), 1699–1707. https://doi.org/10.1007/s11694-020-00418-z

Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. Analyst, 137(2), 293–300. https://doi.org/10.1039/C1AN15605E

Zhang, Y., Su, R., Yuan, H., Zhou, H., Jiangfang, Y., Liu, X., & Luo, J. (2023). Widely targeted volatilomics and metabolomics analysis reveal the metabolic composition and diversity of Zingiberaceae plants. Metabolites, 13(6), 700. https://doi.org/10.3390/metabo13060700

Zhao, Y., Chen, Y., Gao, M., Wu, L., & Wang, Y. (2023). Comparative investigation of key aroma terpenoids of Litsea cubeba essential oil by sensory, chromatographic, spectral and molecular studies. LWT, 176, 114519. https://doi.org/10.1016/j.lwt.2023.114519

Authors

Ning Ima Arie Wardayanie
Endang Prangdimurti
Dase Hunaefi
Irmanida Batubara
Fitra Tunnisa
Dian Rosalina
Ani Afriyanti
Nancy Dewi Yuliana
nancy_dewi@apps.ipb.ac.id (Primary Contact)
Wardayanie, N. I. A., Prangdimurti, E., Hunaefi, D., Batubara, I. ., Tunnisa , F. ., Rosalina, D. . ., Afriyanti , A. ., & Yuliana , N. D. . (2025). Profil Metabolit Volatil dan Non Volatil Bangle Hitam. Jurnal Teknologi Dan Industri Pangan, 36(2), 208-225. https://doi.org/10.6066/jtip.2025.36.2.208

Article Details

How to Cite

Wardayanie, N. I. A., Prangdimurti, E., Hunaefi, D., Batubara, I. ., Tunnisa , F. ., Rosalina, D. . ., Afriyanti , A. ., & Yuliana , N. D. . (2025). Profil Metabolit Volatil dan Non Volatil Bangle Hitam. Jurnal Teknologi Dan Industri Pangan, 36(2), 208-225. https://doi.org/10.6066/jtip.2025.36.2.208