Modifikasi Pati Jagung (Zea mays) secara Heat Moisture Treatment (HMT) untuk Memperbaiki Sifat Fisik dan Mekanis Edible Film
Abstract
Plastic production is already high, and plastic pollutes the environment after use. There is a need for innovation in food packaging, such as the use of edible films as an alternative to reduce the use of plastic materials. Edible films can be prepared from starch. In Indonesia, starch-producing plants are abundant and among them such as potatoes, cassava, rice and corn have the potential to be used for edible film production. The objective of this research was to improve the physical and mechanical properties of edible films by heat moisture treatment (HMT) modification of corn starch as a raw material. This research consisted of two stages: (1) characterization and modification of corn starch with three temperature treatments (HMT 100, 110, and 120 °C) and (2) characterization of the physical and mechanical properties of edible films. The results showed that The highest amylose content for HMT 120 treatment was 29.47% with a whiteness index of 84.40. The ap-pearance of starch granules after modification was different from the control, and the pasting properties para-meters such as maximum viscosity, trough viscosity, breakdown viscosity, final viscosity, and setback viscosity of starch after modification were below those of the control. Edible films had an average thickness of 0.14 mm, while transparency was different from the control, with the lowest value on HMT 100 was 1.11. HMT 120 sample had the best characteristics with the lowest WVTR value of 23.47 g/m2/24 h, and the highest tensile strength value of 4.12 MPa, while the elongation value was similar to other samples and control. HMT 120 had a highest value on X-ray diffraction XRD with a degree of crystallization up to 41%. The modification of HMT has the potential to improve the characteristics of edible films, both in terms of properties and mechanics.
Full text article
References
[AOAC] Association of Official Analytical Chemists. (2012). Official Methods of Analysis (19th ed.). Association of Official Analytical Chemists.
Ariyantoro, A. R., Sigit Amanto, B., & Kiswuri. (2020). Effect of heat moisture treatment (HMT) on physicochemical characteristics of sorghum flour (Sorghum bicolor L. Moench). IOP Conference Series: Earth and Environmental Science, 518, 012067. https://doi.org/10.1088/1755-1315/518/1/012067
[ASTM] American Society for Testing and Materials. (2002). Standard test method for tensile properties of thin plastic sheeting. In Annual book of ASTM standards (Designation D882 02). ASTM. https://doi.org/10.1520/D0882-18
BeMiller, J. N., & Huber, K. C. (2015). Physical modification of food starch functionalities. Annual Review of Food Science and Technology, 61, 19–69. https://doi.org/10.1146/annurev-food-022814-015552
Dome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, 12(3), 641. https://doi.org/10.3390/polym12030641
Escamilla-García, M., Reyes-Basurto, A., García-Almendárez, B. E., Hernández-Hernández, E., Calderón-Domínguez, G., Rossi-Márquez, G., & Regalado-González, C. (2017). Modified starch-chitosan edible films: Physicochemical and mechanical characterization. Coatings, 7(12), 224. https://doi.org/10.3390/coatings7120224
Faridah, D. N., & Thonthowi, A. (2020). Karakterisasi fisik pati tapioka modifikasi gabungan hidroksipropilasi dengan fosfat-ikat silang. Jurnal Mutu Pangan Indonesia: Indonesian Journal of Food Quality, 7(1), 30–37. https://doi.org/10.29244/jmpi.2020.7.1.30
Indrianti, N., Pranoto, Y., & Abbas, A. (2018). Preparation and characterization of edible films made from modified sweet potato starch through heat moisture treatment. Indonesian Journal of Chemistry, 18(4), 679–687. https://doi.org/10.22146/ijc.26740
Jaganmohan, M. (2024, n.d.). Global plastic production. Statista. https://www.statista.com/ statistics/282732/global-production-of-plastics-since-1950/
Kaur, N., Chandran, S., Zuliana, R., Abdel-Hamid, I. M., Fathalla, H., & Zienab, F. R. A. (2024). Aloe vera/chitosan-based edible film with enhanced antioxidant, antimicrobial, thermal, and barrier properties for sustainable food preservation. Polymers, 16(2), 242. https://doi.org/10.3390/polym16020242
Krystyjan, M., Khachatryan, G., Grabacka, M., Krzan, M., Witczak, M., Grzyb, J., & Woszczak, L. (2021). Physicochemical, bacteriostatic, and biological properties of starch/chitosan polymer composites modified by graphene oxide, designed as new bionanomaterials. Polymers, 13(14), 2327. https://doi.org/10.3390/polym13142327
Kumar, R., & Khatkar, B. S. (2017). Thermal, pasting, and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. Journal of Food Science and Technology, 54, 2403–2410. https://doi.org/10.1007/s13197-017-2681-x
Kumar, S. R., Tangsrianugul, N., Sriprablom, J., Wongsagonsup, R., Wansuksri, R., & Suphantharika, M. (2023). Effect of heat-moisture treatment on the physicochemical properties and digestibility of proso millet flour and starch. Carbohydrate Polymers, 307, 120630. https://doi.org/10.1016/j.carbpol.2023.120630
Liu, C., Jiang, S., Zhang, S., Xi, T., Sun, Q., & Xiong, L. (2016). Characterization of edible corn starch nanocomposite films: The effect of self-assembled starch nanoparticles. Starch-Stärke, 68(3–4), 239–248. https://doi.org/10.1002/star.201500252
Majzoobi, M., Pesaran, Y., Mesbahi, G., Golmakani, M. T., & Farahnaky, A. (2015). Physical properties of biodegradable films from heat‐moisture‐treated rice flour and rice starch. Starch-Stärke, 67(11-12), 1053–1060. https://doi.org/10.1002/star.201500102
Marta, H., Cahyana, Y., Bintang, S., Soeherman, G. P., & Djal, M. (2022). Physicochemical and pasting properties of corn starch as affected by hydrothermal modification by various methods. International Journal of Food Properties, 25(1), 792–812. https://doi.org/10.1080/10942912.2022.2064490
Nouraddini, M., Esmaiili, M., & Mohtarami, F. (2018). Development and characterization of edible films based on eggplant flour and corn starch. International Journal of Biological Macromolecules, 12, 1639–1645. https://doi.org/10.1016/j.ijbiomac.2018.09.126
Ribba, L., Garcia, N. L., D’Accorso, N., & Goyanes, S. (2017). Disadvantages of starch-based materials, feasible alternatives in order to overcome these limitations. Academic Press. Cambridge, Massachusetts (hlm. 37–76). https://doi.org/10.1016/B978-0-12-809439-6.00003-0
Sindhu, R., Devi, A., & Khatkar, B. S. (2021). Morphology, structure, and functionality of acetylated, oxidized, and heat moisture treated amaranth starches. Food Hydrocolloids, 118, 106800. https://doi.org/10.1016/j.foodhyd.2021.106800
Singh, M., & Adedeji, A. A. (2017). Characterization of hydrothermal and acid modified proso millet starch. LWT-Food Science and Technology, 79, 21–26. https://doi.org/10.1016/j.lwt.2017.01.008
Singh, P., Anshu, S. C., & Harneet, K. M. (2018). Development of starch based edible films. International Journal of Developmental Research, 8, 23501–23506.
Siskawardani, D. D., Warkoyo, Hidayat, & Sukardi. (2020). Physic-mechanical properties of edible film based on taro starch (Colocasia esculenta L. Schoott) with glycerol addition. IOP Conference Series: Earth and Environmental Science, 458, 012039. https://doi.org/10.1088/ 1755-1315/458/1/012039
Suderman, N., Isa, M. I. N., & Sarbon, N. M. (2018). The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food Bioscience, 24, 111–119. https://doi.org/10.1016/j.fbio.2018.06.006
Sulistyo, F. T., Utomo, A. R., & Erni, S. (2018). Pengaruh konsentrasi karagenan terhadap karakteristik fisikokimia edible film berbasis gelatin. Jurnal Teknologi Pangan dan Gizi, 17(2), 81–87. https://doi.org/10.33508/jtpg.v17i2.1888
Vanisseri, A. K., Hasan, M., Mangaraj, S. M., Pravitha, V., Verma, D. K., & Srivastav, P. P. (2022). Trends in edible packaging films and its prospective future in food: A review. Applied Food Research, 2(1), 100118. https://doi.org/10.1016/j.afres.2022.100118
Viana, E. B. M., Oliveira, N. L., Ribeiro, J. S., Almeida, M. F., Souza, C. C. E., Resende, J. V., Santos, L. S., & Veloso, C. M. (2022). Development of starch-based bioplastics of green plantain banana (Musa paradisiaca L.) modified with heat-moisture treatment (HMT). Food Packaging and Shelf Life, 31, 100776. https://doi.org/10.1016/j.fpsl.2021.100776
Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato, and rice starches. Starch-Stärke, 67(1–2), 14–29. https://doi.org/10.1002/star.201300238
Wulandari, E., Een, S., Efri, M., & Hanni, L. F. (2019). Profil gelatinisasi tepung sorgum putih termodifikasi α-amylase. Jurnal Teknologi dan Industri Pangan, 30(2), 173–179. https://doi.org/10.6066/jtip.2019.30.2.173
Yumeina D, Adil S, Samsuar. 2021. The effect of soaking sago starch in acetate acids on the whiteness degree of sago flour. IOP Conference Series: Earth Environment Science 807, 032006. https://doi.org/10.1088/1755-1315/807/3/032006
Zavareze, E. D. R., Pinto, V. Z., Klein, B., El Halal, S. L. M., Elias, M. C., Prentice-Hernández, C., & Dias, A. R. G. (2012). Development of oxidised and heat moisture treated potato starch film. Food Chemistry, 132(1), 344–350. https://doi.org/10.1016/j.foodchem.2011.10.090