Penurunan Viabilitas dan Ekspresi Gen Virulensi Salmonella Typhimurium Akibat Paparan Ekstrak Air Bawang Putih

Andani Tiara(1) , Siti Nurjanah(2) , Zakiah Wulandari(3)
(1) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia,
(2) Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor, Indonesia. South-East Asia Food & Agricultural Science and Technology (SEAFAST) Center, IPB University, Bogor, Indonesia,
(3) Departemen Ilmu Produksi dan Teknologi Peternakan, Fakultas Peternakan, IPB, Bogor, Indonesia

Abstract

Garlic contains antibacterial compounds that are heat-sensitive. The ultrasonic bath method can reduce extraction time and oxidative degradation during aqueous garlic extraction, enhancing its antibacterial properties. Salmonella Typhimurium, a common bacterial contaminant in chicken, can cause salmonellosis in humans by expressing specific virulence genes. This study examined the reduction in the expression of S. Typhimurium virulence genes (stm, invA, stn, and pefA) after exposure to aqueous garlic extract.  Freeze-dried garlic was dissolved in several concentrations (5, 10, 20, 40, and 80 mg/mL distilled water) and sonicated using an ultrasonic bath for 5, 10, and 20 min. Total phenolic content of each extract was measured, and the minimum bactericidal, minimum inhibitory, and sub-inhibitory concentrations against S. Typhimurium were also determined. Virulence gene expression was measured by reverse transcription q-PCR. The extract prepared at 80 mg/mL for 20 min showed a higher phenolic content (366.57 mg GAE/100 g) and inhibition zone (19 mm). MBC, MIC, and SIC concentrations were 80, 40, and 20 mg/mL. S. Typhimurium exposed by MIC and SIC for 2 h reduced the number (1.39 and 1.22 log reduction CFU/mL) and down-regulated the expression genes (stm, invA, stn, and pefA). The higher reduction of expression genes was observed for invA (0.98 and 0.75 log reduction) relative to the 16s rRNA housekeeping gene. These results suggest that the aqueous garlic extracts reduce the bacterial count and the virulence of S. Typhimurium.

Full text article

Generated from XML file

References

Adeola, F. (2018). Normalization of gene expression by quantitative RT-PCR in human cell line: Comparison of 12 endogenous reference genes. Ethiopian Journal of Health Sciences, 28(6), 741–748. https://doi.org/10.4314/ejhs.v28i6.9

Alirezaei, S., Godarzi, H., Moezi Ghadim, N., & Maheri, A. (2019). Antimicrobial activity of aqueous garlic extract (Allium sativum) against Porphyromonas gingivalis: An in-vitro study. Journal of Research in Dental and Maxillofacial Sciences, 4(4), 17–22. https://doi.org/10.29252/jrdms.4.4.17

Amory, H., Cesarini, C., De Maré, L., Loublier, C., Moula, N., Detilleux, J., Saulmont, M., Garigliany, M. M., Lecoq, L. (2023). Relationship between the cycle threshold value (Ct) of a Salmonella spp. qPCR performed on feces and clinical signs and outcome in horses. Microorganisms, 11(8), 1950. https://doi.org/10.3390/microorganisms11081950

Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: The role of poultry meat. Clinical Microbiology and Infection, 22(2), 110–121. https://doi.org/10.1016/j.cmi.2015.12.004

Arredondo-Alonso, S., Willems, R. J., van Schaik, W., & Schürch, A. C. (2017). On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microbial Genomics, 3(10), 1–8. https://doi.org/10.1099/mgen.0.000128

Barbosa, P. de P. M., Ruviaro, A. R., Martins, I. M., Macedo, J. A., LaPointe, G., & Macedo, G. A. (2021). Enzyme-assisted extraction of flavanones from citrus pomace: Obtention of natural compounds with anti-virulence and anti-adhesive effect against Salmonella enterica subsp. enterica serovar Typhimurium. Food Control, 120, 107525. https://doi.org/10.1016/j.foodcont.2020.107525

Bhatwalkar, S. B., Mondal, R., Babu, S., & Krishna, N. (2021). Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Frontiers in Microbiology, 12, 613077. https://doi.org/10.3389/fmicb.2021.613077

Borlinghaus, J., Albrecht, F., Gruhlke, M. C. H., Nwachukwu, I. D., & Slusarenko, A. J. (2014). Allicin: Chemistry and biological properties. Molecules, 19(8), 12591–12618. https://doi.org/10.3390/molecules190812591

Cavalcanti, V. P., Aazza, S., Bertolucci, S. K. V., Rocha, J. P. M., Coelho, A. D., Oliveira, A. J. M., Mendes, L. C., Pereira, M. M. A., Morais, L. C., Forim, M. R., et al. (2021). Solvent mixture optimization in the extraction of bioactive compounds and antioxidant activities from garlic (Allium sativum L.). Molecules, 26(19), 6026. https://doi.org/10.3390/molecules26196026

Davis, W. W., & Stout, T. R. (1971). Disc plate method of microbiological antibiotic assay. II. Novel procedure offering improved accuracy. Applied Microbiology, 22(4), 666–670. https://doi.org/10.1128/aem.22.4.666-670.1971

Dawwam, G. E., Shemy, M. T. A., & Demerdash, A. S. E. (2022). Green synthesis of cellulose nanocrystal/ZnO bio-nanocomposites exerting antibacterial activity and downregulating virulence toxigenic genes of food-poisoning bacteria. Scientific Reports, 12, 21087. https://doi.org/10.1038/s41598-022-21087-6

Đermić, D., Ljubić, S., Matulić, M., Procino, A., Feliciello, M. C., Ugarković, Đ., & Feliciello, I. (2023). Reverse transcription-quantitative PCR (RT-qPCR) without the need for prior removal of DNA. Scientific Reports, 13(1), 38383. https://doi.org/10.1038/s41598-023-38383-4

Dranca, F., & Oroian, M. (2016). Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrasonics Sonochemistry, 31, 637–646. https://doi.org/10.1016/j.ultsonch.2015.11.008

Friedrich, M. J., Kinsey, N. E., Vila, J., & Kadner, R. J. (1993). Nucleotide sequence of a 13.9 kb segment of the 90 kb virulence plasmid of Salmonella typhimurium: The presence of fimbrial biosynthetic genes. Molecular Microbiology, 8(3), 543–558. https://doi.org/10.1111/j.1365-2958.1993.tb01599.x

Gabriel, T., Vestine, A., Kim, K. D., Kwon, S. J., Sivanesan, I., & Chun, S. C. (2022). Antibacterial activity of nanoparticles of garlic (Allium sativum) extract against different bacteria such as Streptococcus mutans and Porphyromonas gingivalis. Applied Sciences, 12(7), 3491. https://doi.org/10.3390/app12073491

Gharieb, R. M., Tartor, Y. H., & Khedr, M. H. E. (2015). Non-typhoidal Salmonella in poultry meat and diarrhoeic patients: Prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multidrug resistant strains. Gut Pathogens, 7(1), 1–11. https://doi.org/10.1186/s13099-015-0081-1

Hugas, M., & Beloeil, P. A. (2014). Controlling Salmonella along the food chain in the European Union - Progress over the last ten years. Eurosurveillance, 19(19), 20804. https://doi.org/10.2807/1560-7917.ES2014.19.19.20804

Ismail, N. I., Hashim, Y. Z. H. Y., Jamal, P., MohdSalleh, H., & Othman, R. (2014). Ultrasonic-assisted extraction of thiols from garlic bulbs. Advances in Environmental Biology, 8(3), 725–728.

[ISO] International Organization for Standarization. (2007). ISO 7218:2007 tentang Microbiology of food and animal feeding stuffs — General requirements and guidance for microbiological examinations. Volume ke-2013. Switzerland. https://www.iso.org.

Kaur, R., Tiwari, A., Manish, M., Maurya, I. K., Bhatnagar, R., & Singh, S. (2021). Common garlic (Allium sativum L.) has potent Anti-Bacillus anthracis activity. Journal of Ethnopharmacology, 264, 113230. https://doi.org/10.1016/j.jep.2020.113230

Khan, S., Beattie, T. K., & Knapp, C. W. (2017). The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria. Ecotoxicology, 26(2), 283–292. https://doi.org/10.1007/s10646-017-1762-y

Klumpp, S., Zhang, Z., & Hwa, T. (2009). Growth-rate dependent global effects on gene expression in bacteria. Cell, 139(7), 366–378. https://doi.org/10.1016/j.cell.2009.12.001

Kshirsagar, M., Dodamani, A., Karibasappa, G., Vishwakarma, P., Vathar, J., Sonawane, K., Jadhav, H., Khobragade, V. (2018). Antibacterial activity of garlic extract on cariogenic bacteria: An in vitro study. AYU (An International Quarterly Journal of Research in Ayurveda), 39(3), 165. https://doi.org/10.4103/ayu.ayu_193_16

Kureljušić, J., Žutić, J., Kureljušić, B., Rokvić, N., Tasić, A., Ljubojević Pelić, D., & Vesković Moračanin, S. (2021). Salmonella - Foodborne pathogen and antimicrobial resistance. IOP Conference Series: Earth and Environmental Science, 854, 012049. https://doi.org/10.1088/1755-1315/854/1/012049

Kwon, Y. W., & Lee, S. Y. (2020). Effects of antibiotics at sub-minimal inhibitory concentrations on the morphology of Streptococcus mutans and Lactobacillus acidophilus. Oral Biology Research, 44(1), 1–7. https://doi.org/10.21851/obr.44.01.202003.1

Lee, S. W., & Musa, N. (2008). Inhibition of Edwardsiella tarda and other fish pathogens by Allium sativum L. (Alliaceae) extract. American Journal of Agricultural and Environmental Sciences, 3(5), 692–696.

Liaqat, A., Zahoor, T., Atif Randhawa, M., & Shahid, M. (2019). Characterization and antimicrobial potential of bioactive components of sonicated extract from garlic (Allium sativum) against foodborne pathogens. Journal of Food Processing and Preservation, 43(5), 1–8. https://doi.org/10.1111/jfpp.13936

Loghmanifar, S., Roozbeh Nasiraie, L., Nouri, H., & Jafarian, S. (2022). Optimization of ultrasound-assisted garlic extraction using response surface methodology. Scientific Reports, 29(6), 3188–3197. https://doi.org/10.24200/sci.2022.58130.5581

Magryś, A., Olender, A., & Tchórzewska, D. (2021). Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Archives of Microbiology, 203(5), 2257–2268. https://doi.org/10.1007/s00203-021-02248-z

Mehta, N., S J., Kumar, P., Verma, A. K., Umaraw, P., Khatkar, S. K., Khatkar, A. B., Pathak, D., Kaka, U., & Sazili, A. Q. (2022). Ultrasound-assisted extraction and the encapsulation of bioactive components for food applications. Foods, 11(19), 1–35. https://doi.org/10.3390/foods11192973

Melati, R. P. (2022). Identifikasi dan sekuensing isolat Salmonella spp. asal karkas ayam dengan marker gen invasi [Tesis, IPB University]. IPB Repository. https://repository.ipb.ac.id/handle/123456789/111507

Muhammad, M., Yusuf, U., Ahmad, J., & Kloy, A. (2020). A comprehensive review study of the antibacterial properties of garlic (Allium sativum). Biological Sciences, 9(2), 11–15. https://doi.org/10.13140/RG.2.2.14103.60326

Müller, A., Eller, J., Albrecht, F., Prochnow, P., Kuhlmann, K., Bandow, J. E., Slusarenko, A. J., & Leichert, L. I. O. (2016). Allicin induces thiol stress in bacteria through S-allylmercapto modification of protein cysteines. Journal of Biological Chemistry, 291(22), 11477–11490. https://doi.org/10.1074/jbc.M115.702308

Nagella, P., Thiruvengadam, M., Ahmad, A., Yoon, J. Y., & Chung, I. M. (2014). Composition of polyphenols and antioxidant activity of garlic bulbs collected from different locations of Korea. Asian Journal of Chemistry, 26(3), 897–902. https://doi.org/10.14233/ajchem.2014.16143A

Namimatsu, T., Asai, T., Osumi, T., Imai, Y., & Sato, S. (2006). Prevalence of the virulence plasmid in Salmonella Typhimurium isolates from pigs. Journal of Veterinary Medical Science, 68(2), 187–188. https://doi.org/10.1292/jvms.68.187

Narimisa, N., Amraei, F., Kalani, B. S., Mohammadzadeh, R., & Jazi, F. M. (2020). Effects of sub-inhibitory concentrations of antibiotics and oxidative stress on the expression of type II toxin-antitoxin system genes in Klebsiella pneumoniae. Journal of Global Antimicrobial Resistance, 21, 51–56. https://doi.org/10.1016/j.jgar.2019.09.005

Nurjanah, S., Rahayu, W. P., & Al Mutaqin, L. (2019). Detection method for Salmonella Typhimurium and Salmonella Enteritidis using real-time polymerase chain reaction. International Journal of Engineering and Technology, 7(4), 302. https://doi.org/10.14419/ijet.v7i4.14.27661

Oktaviani, S. (2022). Aktivitas ekstrak air bawang putih terhadap Salmonella Typhimurium dan ekspresi gen patogenitas STM. [Skripsi, IPB, Bogor].

Paula, D. P., & Andow, D. A. (2021). Melting curve analysis for detection and identification of ghost parasitoids in host carcasses a month after host death. Methods in Ecology and Evolution, 12(9), 1552–1561. https://doi.org/10.1111/2041-210X.13626

Robertson, J., Schonfeld, J., Bessonov, K., Bastedo, P., & Nash, J. H. E. (2023). A global survey of Salmonella plasmids and their associations with antimicrobial resistance. Microbial Genomics, 9(5), 1–14. https://doi.org/10.1099/mgen.0.001002

Romes, N. B., Hamid, M. A., Hashim, S. E., & Wahab, R. A. (2019). Statistical modelling of ultrasonic-aided extraction of Elaeis guineensis leaves for better-quality yield and total phenolic content. Indonesian Journal of Chemistry, 19(3), 811–826. https://doi.org/10.22146/ijc.41603

Rouf, R., Jamal, S., Kumer, D., & Torequl, M. (2020). Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in Food Science & Technology, 104, 219–234. https://doi.org/10.1016/j.tifs.2020.08.006

Rowlands, R. E. G., Ristori, C. A., Ikuno, A. A., Barbosa, M. L., Jakabi, M., Franco, B. D. G. de M. (2014). Prevalence of drug resistance and virulence features in Salmonella spp. isolated from food associated or not with salmonellosis in Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 56(6), 461–467. https://doi.org/10.1590/S0036-46652014000600001

Salimi, A., Rahmani, S., & Sharifi-Zarchi, A. (2023). InterOpt: Improved gene expression quantification in qPCR experiments using weighted aggregation of reference genes. iScience, 26(10), 107945. https://doi.org/10.1016/j.isci.2023.107945

Sanjaya, Y. A., Tola, P. S., & Rahmawati, R. (2022). Ultrasound-assisted extraction (UEA) sebagai metode potensial untuk meningkatkan ekstraksi senyawa bioaktif. ICES-ET, 2(1), 191–198. http://dx.doi.org/10.11594/nstp.2022.2729

Savairam, V. D., Patil, N. A., Borate, S. R., Ghaisas, M. M., & Shete, R. V. (2023). A review of its important pharmacological activities. Pharmacological Research - Modern Chinese Medicine, 8, 100283. https://doi.org/10.1016/j.prmcm.2023.100283

Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73

Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria. Water, 12, 3313–3330. https://doi.org/10.3390/w12123313

Shang, A., Cao, S. Y., Xu, X. Y., Gan, R. Y., Tang, G. Y., Corke, H., Mavumengwana, V., & Li, H. B. (2019). Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8(7), 1–31. https://doi.org/10.3390/foods8070246

Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., Rashid, A., Xu, B., Liang, Q., Ma, H., et al. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101, 106646. https://doi.org/10.1016/j.ultsonch.2023.106646

Skyberg, J. A., Logue, C. M., & Nolan, L. K. (2006). Virulence genotyping of Salmonella spp. with multiplex PCR. Avian Diseases, 50(1), 77–81. https://doi.org/10.1637/7417.1

Takó, M., Kerekes, E. B., Zambrano, C., Kotogán, A., Papp, T., Krisch, J., & Vágvölgyi, C. (2020). Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants, 9(2). https://doi.org/10.3390/antiox9020165

Tavares, L., Santos, L., & Zapata Noreña, C. P. (2021). Bioactive compounds of garlic: A comprehensive review of encapsulation technologies, characterization of the encapsulated garlic compounds, and their industrial applicability. Trends in Food Science & Technology, 114, 232–244. https://doi.org/10.1016/j.tifs.2021.05.019

Thung, T. Y., Radu, S., Mahyudin, N. A., Rukayadi, Y., Zakaria, Z., Mazlan, N., Tan, B. H., Lee, E., Yeoh, S. L., Chin, Y. Z., et al. (2018). Prevalence, virulence genes, and antimicrobial resistance profiles of Salmonella serovars from retail beef in Selangor, Malaysia. Frontiers in Microbiology, 8, 1–8. https://doi.org/10.3389/fmicb.2017.02697

Wittmeier, P., & Hummel, S. (2022). Benchmark agarose gel electrophoresis to assess PCR product yield: Comparison with spectrophotometry, fluorometry, and qPCR. Biotechniques, 72(4), 155–158. https://doi.org/10.2144/btn-2021-0094

Yang, X., Sha, K., Xu, G., Tian, H., Wang, X., Chen, S., Wang, Y., Li, J., Chen, J., & Huang, N. (2016). Subinhibitory concentrations of allicin decrease uropathogenic Escherichia coli (UPEC) biofilm formation, adhesion ability, and swimming motility. International Journal of Molecular Sciences, 17(7), 979. https://doi.org/10.3390/ijms17070979

Yeop, A., Sandanasam, J., Pan, S. F., Abdulla, S., Yusoff, M. M., & Gimbun, J. (2017). The effect of particle size and solvent type on the gallic acid yield obtained from Labisia pumila by ultrasonic extraction. MATEC Web of Conferences, 111, 1–5. https://doi.org/10.1051/matecconf/201711102008

Yosua, A. (2018). Deteksi Salmonella Hadar, Salmonella Typhimurium, dan Salmonella Enteritidis menggunakan polymerase chain reaction (PCR). [Skripsi, Institut Pertanian Bogor].

Yulian, R., Narulita, E., Iqbal, M., Sari, D. R., Suryaningsih, I., & Ningrum, D. E. A. F. (2020). Detection of virulence and specific genes of Salmonella sp. indigenous from Jember, Indonesia. Biodiversitas, 21(7), 2889–2892. https://doi.org/10.13057/biodiv/d210703

Zadeh, M. G., Bidhendi, S. M., & Ashrafi, F. (2020). Comparative study of garlic extract effect on the expression of genes involved in quorum sensing in Pseudomonas aeruginosa and the antibiotic tobramycin. Iranian Journal of Medical Microbiology, 15(1), 107–120. https://doi.org/10.30699/ijmm.15.1.107

Authors

Andani Tiara
Siti Nurjanah
sity_nr@apps.ipb.ac.id (Primary Contact)
Zakiah Wulandari
Tiara, A., Nurjanah, S., & Wulandari, Z. (2025). Penurunan Viabilitas dan Ekspresi Gen Virulensi Salmonella Typhimurium Akibat Paparan Ekstrak Air Bawang Putih. Jurnal Teknologi Dan Industri Pangan, 36(1), 40-52. https://doi.org/10.6066/jtip.2025.36.1.40
Copyright and license info is not available

Article Details

How to Cite

Tiara, A., Nurjanah, S., & Wulandari, Z. (2025). Penurunan Viabilitas dan Ekspresi Gen Virulensi Salmonella Typhimurium Akibat Paparan Ekstrak Air Bawang Putih. Jurnal Teknologi Dan Industri Pangan, 36(1), 40-52. https://doi.org/10.6066/jtip.2025.36.1.40