Transcriptome Analysis and Sensory Evaluation of Thai Native Chicken Raised in Conventional and Free-Range Conditions
Abstract
Ethically raised animal products are believed to be better for both the environment and consumer health. Despite advances in chicken genetics and production systems, we still know little about how free-range condition affects the birds at a molecular level, specifically their gene expression and the resulting meat characteristics. This study aims to compare the transcriptome of Thai Praduhangdum, a native meat chicken raised in conventional floor pen and free-range systems, and investigate how these conditions cause gene expression changes at the molecular level and phenotypic changes in terms of meat sensory evaluation score. A total of 100 Thai Praduhangdum chickens were raised under a free-range system and a conventional floor pen system. At 6 months, blood samples were collected for transcriptome analysis and verified by quantitative real-time PCR. Additionally, meat samples were collected and sensory panel evaluation was performed. A total of 278 unique genes showed significantly different expression levels in either up-regulated or down-regulated direction. Gene set enrichment analysis revealed that these genes are associated with multicellular organism processes, development, and cell differentiation. Meat sensory panel evaluation showed that consumers preferred the appearance of the breast meat from the free-range chicken over the conventional floor pen chicken. Overall, the free-range condition caused detectable differences in gene expression and meat quality of Thai native chicken. The genes and pathways identified in this study provide a starting point for further functional tests and investigations into the relationship between chicken welfare and the physiological response at a molecular level.
References
Bhanja, S., Sudhagar, M., Goel, A., Pandey, N., Mehra, M., Agarwal, S., & Mandal, A. (2014). Differential expression of growth and immunity related genes influenced by in ovo supplementation of amino acids in broiler chickens. Czech Journal of Animal Science, 59(9), 399–408. https://doi.org/10.17221/7651-CJAS
Bray, H. J., & Ankeny, R. A. (2017). Happy chickens lay tastier eggs: Motivations for buying free-range eggs in Australia. Anthrozoös, 30(2), 213–226. https://doi.org/10.1080/08927936.2017.1310986
Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611–622. https://doi.org/10.1373/clinchem.2008.112797
Charoensin, S., Laopaiboon, B., Boonkum, W., Phetcharaburanin, J., Villareal, M. O., Isoda, H., & Duangjinda, M. (2021). Thai native chicken as a potential functional meat source rich in anserine, anserine/carnosine, and antioxidant substances. Animals, 11(3), 902. https://doi.org/10.3390/ani11030902
Chen, S., Xiang, H., Zhang, H., Zhu, X., Wang, D., Wang, J., Yin, T., Liu, L., Kong, M., Li, H., & Zhao, X. (2019). Rearing system causes changes of behavior, microbiome, and gene expression of chickens. Poultry Science, 98(9), 3365–3376. https://doi.org/10.3382/ps/pez140
Chen, S., Xiang, H., Zhu, X., Zhang, H., Wang, D., Liu, H., Wang, J., Yin, T., Liu, L., Kong, M., Zhang, J., Ogura, S., & Zhao, X. (2018). Free dietary choice and Free-Range rearing improve the product quality, GAIT score, and microbial richness of chickens. Animals, 8(6), 84. https://doi.org/10.3390/ani8060084
Cheng, F. Y., Huang, C. W., Wan, T. C., Liu, Y. T., Lin, L. C., & Chyr, C. Y. L. (2008). Effects of free-range farming on carcass and meat qualities of black-feathered Taiwan native chicken. Asian-Australasian Journal of Animal Sciences, 21(8), 1201–1206. https://doi.org/10.5713/ajas.2008.80080
Coenye, T. (2021). Do results obtained with RNA-sequencing require independent verification? Biofilm, 3, 100043. https://doi.org/10.1016/j.bioflm.2021.100043
Da Silva, D. C. F., De Arruda, A. M. V., & Gonçalves, A. A. (2017). Quality characteristics of broiler chicken meat from free-range and industrial poultry system for the consumers. Journal of Food Science and Technology, 54(7), 1818–1826. https://doi.org/10.1007/s13197-017-2612-x
Fallahsharoudi, A., De Kock, N., Johnsson, M., Ubhayasekera, S. J. K. A., Bergquist, J., Wright, D., & Jensen, P. (2015). Domestication effects on stress induced steroid secretion and adrenal gene expression in chickens. Scientific Reports, 5(1). https://doi.org/10.1038/srep15345
Ge, S. X., Jung, D., & Yao, R. (2019). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628–2629. https://doi.org/10.1093/bioinformatics/btz931
Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907–915. https://doi.org/10.1038/s41587-019-0201-4
Lengkidworraphiphat, P., Wongpoomchai, R., Bunmee, T., Chariyakornkul, A., Chaiwang, N., & Jaturasitha, S. (2020). Taste-Active and Nutritional Components of Thai Native chicken meat: A perspective of Consumer satisfaction. Food Science of Animal Resources, 41(2), 237–246. https://doi.org/10.5851/kosfa.2020.e94
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
Marino, L. (2017). Thinking chickens: A review of cognition, emotion, and behavior in the domestic chicken. Animal Cognition, 20(2), 127–147. https://doi.org/10.1007/s10071-016-1064-4
Mekchay, S., Supakankul, P., Assawamakin, A., Wilantho, A., Chareanchim, W., & Tongsima, S. (2014). Population structure of four Thai indigenous chicken breeds. BMC Genomic Data, 15(1), 40. https://doi.org/10.1186/1471-2156-15-40
Mellor, D. (2016). Updating animal welfare thinking: Moving beyond the “five freedoms” towards “a life worth living”. Animals, 6(3), 21. https://doi.org/10.3390/ani6030021
Michalczuk, M., Zdanowska-Sąsiadek, Ż., Damaziak, K., & Niemiec, J. (2016). Influence of indoor and outdoor systems on meat quality of slow-growing chickens. CyTA - Journal of Food, 1–6. https://doi.org/10.1080/19476337.2016.1196246
Molee, W., Khosinklang, W., Tongduang, P., Thumanu, K., Yongsawatdigul, J., & Molee, A. (2022). Biomolecules, fatty acids, meat quality, and growth performance of Slow-Growing chickens in an organic raising system. Animals, 12(5), 570. https://doi.org/10.3390/ani12050570
Park, W., Srikanth, K., Lim, D., Park, M., Hur, T., Kemp, S., Dessie, T., Kim, M. S., Lee, S., Pas, M. F. W. T., Kim, J., & Park, J. (2018). Comparative transcriptome analysis of Ethiopian indigenous chickens from low and high altitudes under heat stress condition reveals differential immune response. Animal Genetics, 50(1), 42–53. https://doi.org/10.1111/age.12740
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11(9), 1650–1667. https://doi.org/10.1038/nprot.2016.095
Pértille, F., Brantsæter, M., Nordgreen, J., Coutinho, L. L., Janczak, A. M., Jensen, P., & Guerrero-Bosagna, C. (2017). DNA methylation profiles in red blood cells of adult hens correlate to their rearing conditions. Journal of Experimental Biology. https://doi.org/10.1242/jeb.157891
Reimand, J., Kull, M., Peterson, H., Hansen, J., & Vilo, J. (2007). g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Research, 35(suppl_2), W193–W200. https://doi.org/10.1093/nar/gkm226
Rodríguez-Hernández, R., Oviedo-Rondón, E. O., & Rondón-Barragán, I. S. (2021). Identification of reliable reference genes for expression studies in the magnum of laying hens housed in cage and cage‐free systems. Veterinary Medicine and Science, 7(5), 1890–1898. https://doi.org/10.1002/vms3.507
Sadr, A. S., Nassiri, M., Ghaderi-Zefrehei, M., Heidari, M., Smith, J., & Dolatabady, M. M. (2023). RNA-seq profiling between commercial and indigenous Iranian chickens highlights differences in innate immune gene expression. Genes, 14(4), 793. https://doi.org/10.3390/genes14040793
Scott, A. B., Singh, M., Toribio, J., Hernandez-Jover, M., Barnes, B., Glass, K., Moloney, B., Lee, A., & Groves, P. (2017). Comparisons of management practices and farm design on Australian commercial layer and meat chicken farms: Cage, barn and free range. PLoS ONE, 12(11), e0188505. https://doi.org/10.1371/journal.pone.0188505
Seritrakul, P., & Gross, J. M. (2019). Genetic and epigenetic control of retinal development in zebrafish. Current Opinion in Neurobiology, 59, 120–127. https://doi.org/10.1016/j.conb.2019.05.008
Siriwadee, P., Wirot, L., Thanapol, P., & Wirawan, N. (2023). Genetic diversity among five native Thai chickens and Khiew-Phalee chickens in lower-northern Thailand using mitochondrial DNA barcodes. Biodiversitas Journal of Biological Diversity, 24(4). https://doi.org/10.13057/biodiv/d240404
Stadig, L. M., Rodenburg, T. B., Reubens, B., Aerts, J., Duquenne, B., & Tuyttens, F. A. (2016). Effects of free-range access on production parameters and meat quality, composition and taste in slow-growing broiler chickens. Poultry Science, 95(12), 2971–2978. https://doi.org/10.3382/ps/pew226
Stefanetti, V., Mancinelli, A. C., Pascucci, L., Menchetti, L., Castellini, C., Mugnai, C., Fiorilla, E., Miniscalco, B., Chiattelli, D., Franciosini, M. P., & Proietti, P. C. (2023). Effect of rearing systems on immune status, stress parameters, intestinal morphology, and mortality in conventional and local chicken breeds. Poultry Science, 102(12), 103110. https://doi.org/10.1016/j.psj.2023.103110
Swaeng-ngam, S., Inrirai, P., Moonsan, P., & Moonsan, Y. (2023). Improving standards of free-range pradu-hang dum Chiang Mai native chicken farms through good agricultural practices in Uttaradit Province. Area Based Development Research Journal, 15(2), 102–116.
Teinlek, P., Siripattarapravat, K., & Tirawattanawanich, C. (2018). Genetic diversity analysis of Thai indigenous chickens based on complete sequences of mitochondrial DNA D-loop region. Asian-Australasian Journal of Animal Sciences, 31(6), 804–811. https://doi.org/10.5713/ajas.17.0611
Wu, P., Dai, G., Chen, F., Chen, L., Zhang, T., Xie, K., Wang, J., & Zhang, G. (2018). Transcriptome profile analysis of leg muscle tissues between slow- and fast-growing chickens. PLoS ONE, 13(11), e0206131. https://doi.org/10.1371/journal.pone.0206131
Xiang, H., Chen, S., Zhang, H., Zhu, X., Wang, D., Liu, H., Wang, J., Yin, T., Liu, L., Kong, M., Zhang, J., Li, H., & Zhao, X. (2018). Transcriptome changes provide genetic insights into the effects of rearing systems on chicken welfare and product quality. Journal of Animal Science, 96(11), 4552–4561. https://doi.org/10.1093/jas/sky314
Yaemkong, S., Phromnoi, S., Mingchai, C., & Jongjitvimol, T. (2024). Characterization of phenotypic variation in indigenous chicken populations in lower northern Thailand to improve chicken breeding. International Journal of Zoology, 2024, 1–15. https://doi.org/10.1155/2024/9985076
Yang, G., Lu, H., Wang, L., Zhao, J., Zeng, W., & Zhang, T. (2019). Genome-Wide identification and transcriptional expression of the METTL21C gene family in chicken. Genes, 10(8), 628. https://doi.org/10.3390/genes10080628
Zhang, S., Zhang, J., Cao, C., Cai, Y., Li, Y., Song, Y., Bao, X., & Zhang, J. (2022). Effects of different rearing systems on lueyang Black-Bone chickens: Meat quality, amino acid composition, and breast muscle transcriptome. Genes, 13(10), 1898. https://doi.org/10.3390/genes13101898
Zhang, T., Lu, H., Wang, L., Yin, M., & Yang, L. (2018). Specific expression pattern of IMP metabolism related-genes in chicken muscle between cage and free range conditions. PLoS ONE, 13(8), e0201736. https://doi.org/10.1371/journal.pone.0201736
Authors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.