Early Gestation Feeding Method Improves Reproductive Performance of Sow

S. P. Su, L. C. Hsia, W. Jantasin, J. W. Lee, Y. D. Hsuuw

Abstract

The relationship between feed intake during early gestation and sows’ reproductive performance is controversial. The purpose of this experiment was to investigate the effects of different feeding strategies during early gestation on reproductive performance in sows. A total of 24 primiparous sows were randomly assigned to one of the following three treatments: Treatment 1: Feed 1.5 kg from mating to day 30 of gestation; Treatment 2: Feed 1.5 kg from mating to day 7, then feed 2.5 kg from days 8 to 30; Treatment 3: Feed 2.5 kg from days 0 to 30. Increased feed intake affected body weight during early gestation. The treatment provided 2.5 kg per day resulted in the highest litter size. While there was no significant difference in litter size between Treatment 2 and Treatment 3, the birth weight and weaning weight of piglets in Treatment 2 seemed better than those in Treatment 3. Increasing feed intake during early gestation (days 0–30) significantly increased litter size. However, Treatment 2, which increased feed intake from days 8 to 30, improved growth performance but did not enhance reproductive performance. In conclusion, high feed intake throughout early gestation significantly increased litter size but also had the potential to increase the number of stillbirths.

References

Athorn, R. Z., Stott, P. G., Bouwman, E. G., Edwards, A. C., Blackberry, M. A., Martin, G. B., & Langendijk, P. (2013). Feeding level and dietary energy source have no effect on embryo survival in gilts, despite changes in systemic progesterone levels. Animal Production Science, 53, 30–37. https://doi.org/10.1071/AN12004

Athorn, R. Z., Stott, P., Bouwman, E. G., Edwards, A. C., Blackberry, M. A., Martin, G. B., & Langendijk, P. (2012). Feeding level and dietary energy source have no effect on embryo survival in gilts, despite changes in systemic progesterone levels. Animal Production Science, 53(1), 30-37.

Bidarimath, M., & Tayade, C. (2017). Pregnancy and spontaneous fetal loss: A pig perspective. Molecular Reproduction and Development, 84(9), 856–869. https://doi.org/10.1002/mrd.22847

Bidarimath, M., Khalaj, K., Kridli, R. T., Kan, F. W. K., Koti, M., & Tayade, C. (2017). Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: A new paradigm for conceptus endometrial cross-talk. Scientific Reports, 7, 40476. https://doi.org/10.1038/srep40476

Bruun, T. S., Bache, J. K., & Amdi, C. (2021). The effects of long- or short-term increased feed allowance prior to first service on litter size in gilts. Translational Animal Science, 5(1), txab005. https://doi.org/10.1093/tas/txab005

Che, L., Yang, Z., Xu, M., Zhang, Z., Liu, P., Xu, S., Che, L., Lin, Y., Fang, Z., Feng, B., Li, J., & Wu, D. (2015). Dietary energy intake affects fetal survival and development during early and middle pregnancy in Large White and Meishan gilts. Animal Nutrition, 1(3), 152-159. https://doi.org/10.1016/j.aninu.2015.08.009

Condous, P. C., Kirkwood, R. N., & van Wettere, W. H. E. J. (2014). The effect of pre- and post-mating dietary restriction on embryonic survival in gilts. Animal Reproduction Science, 148(3-4), 130–136. https://doi.org/10.1016/j.anireprosci.2014.06.003

Dyck, G. W., & Strain, J. H. (1983). Postmating feeding level effects on conception rate and embryonic survival in gilts. Canadian Journal of Animal Science, 63(3), 579-585. https://doi.org/10.4141/cjas83-065

Faccin, J. E. G., Tokach, M. D., Goodband, R. D., DeRouchey, J. M., Woodworth, J. C., & Gebhardt, J. T. (2022). Gilt development to improve offspring performance and survivability. Journal of Animal Science, 100(6), skac128. https://doi.org/10.1093/jas/skac128

Foxcroft, G. R. (2020). Mechanisms mediating nutritional effects on embryonic survival in pigs. Journal of Reproduction and Fertility, Supplement, 52, 47–61. https://doi.org/10.1530/biosciprocs.15.004

Ha, S. H., Choi, Y. H., Mun, J. Y., Park, S. R., Kinara, E., Park, H. J., Hong, J. S., Kim, Y. M., & Kim, J. S. (2024). Correlation between reproductive performance and sow body weight change during gestation. Journal of Animal Science and Technology, 66(3), 543–554. https://doi.org/10.5187/jast.2023.e63

Hu, J. & Yan, P. (2022). Effects of backfat thickness on oxidative stress and inflammation of placenta in large white pigs. Veterinary Sciences, 9, 302. https://doi.org/10.3390/vetsci9060302

Langendijk, P. (2015). Early gestation feeding and management for optimal reproductive performance. In C. Farmer (Ed.), The gestating and lactating sow (pp. 27–46). Wageningen Academic Press. https://doi.org/10.3920/978-90-8686-803-2_2

Langendijk, P. (2021). Latest advances in sow nutrition during early gestation. Animals, 11(6), 1720. https://doi.org/10.3390/ani11061720

Langendijk, P., Bouwman, E. G., Chen, T. Y., Koopmanschap, R. E., & Soede, N. M. (2017). Temporary undernutrition during early gestation, corpora lutea morphometrics, ovarian progesterone secretion, and embryo survival in gilts. Reproduction, Fertility and Development, 29, 1349–1355. https://doi.org/10.1071/RD15520

Leal, D. F., Muroa, B. B. D., Nichia, M., Almond, G. W., Viana, C. H. C., Vioti, G., Carnevale, R. F., & Garbossa, C. A. P. (2019). Effects of post-insemination energy content of feed on embryonic survival in pigs: A systematic review. Animal Reproduction Science, 205, 70–77. https://doi.org/10.1016/j.anireprosci.2019.04.005

Lee, J., Shin, H., Jo, J., Lee, G., & Yun, J. (2023). Large litter size increases oxidative stress and adversely affects nest-building behavior and litter characteristics in primiparous sows. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1219572

Lyderik, K. K., Østrup, E., Bruun, T. S., Amdi, C., & Strathe, A. V. (2023). Fetal and placental development in early gestation of hyper-prolific sows. Theriogenology, 197, 259-266. https://doi.org/10.1016/j.theriogenology.2022.12.002

Magnabosco, D., Bernardi, M. L., Wentz, I., Cunha, E. C. P., & Bortolozzo, F. P. (2016). Low birth weight affects lifetime productive performance and longevity of female swine. Livestock Science, 184, 119–125. https://doi.org/10.1016/j.livsci.2015.12.008

Magnabosco, D., Pereira Cunha, E. C., Bernardi, M. L., Wentz, I., & Bortolozzo, F. P. (2015). Impact of the birth weight of Landrace × Large White dam line gilts on mortality, culling, and growth performance until selection for breeding herd. Acta Scientiae Veterinariae, 43, 1–8.

Mallmann, A. L., Camilotti, E., Fagundes, D. P., Vier, C. E., Mellagi, A. P. G., Ulguim, R. R., Bernardi, M. L., Orlando, U. A. D., Gonçalves, M. A. D., Kummer, R., & Bortolozzo, F. P. (2020). Impact of feed intake during late gestation on piglet birth weight and reproductive performance: A dose-response study performed in gilts. Journal of Animal Science, 98(3), 1-8. https://doi.org/10.1093/jas/skaa034

Małopolska, M. M., Tuz, R., Lambert, B. D., Nowicki, J., & Schwarz, T. (2018). The replacement gilt: Current strategies for improvement of the breeding herd. Journal of Swine Health and Production, 26, 208–214. https://doi.org/10.54846/jshap/1046

Mattos, F. C. S. Z., Canavessi, A. M. O., Wiltbank, M. C., Bastos, M. R., Lemes, A. P., Mourão, G. B., Susin, I., Coutinho, L. L., & Sartori, R. (2017). Investigation of mechanisms involved in regulation of progesterone catabolism using an overfed versus underfed ewe-lamb model. Journal of Animal Science, 95(12), 5537–5546. https://doi.org/10.2527/jas2017.1719

Muns, R., Nuntapaitoon, M., & Tummaruk, P. (2015). Non-infectious causes of pre-weaning mortality in piglets. Livestock Science, S1871-1413(15)30051-2. https://doi.org/10.1016/j.livsci.2015.11.025

Muro, B. B., Carnevale, R. F., Leal, D. F., Almond, G. W., Monteiro, M. S., Poor, A. P., Schinckel, A. P., & Garbossa, C. A. (2023). The importance of optimal body condition to maximise reproductive health and perinatal outcomes in pigs. Nutrition Research Reviews, 36(2), 351–371. https://doi.org/10.1017/S0954422422000129

Okada, H., Tsuzuki, T., & Murata, H. (2018). Decidualization of the human endometrium. Reproductive Medicine and Biology, 17, 220–227. https://doi.org/10.1002/rmb2.12088

Parr, R. A., Davis, I. F., Miles, M. A., & Squires, T. J. (1993). Liver blood flow and metabolic clearance rate of progesterone in sheep. Research in Veterinary Science, 55(3), 311–316. https://doi.org/10.1016/0034-5288(93)90100-T

Pedersen, T. F., Chang, C. Y., Trottier, N. L., Bruun, T. S., & Theil, P. K. (2019). Effect of dietary protein intake on energy utilization and feed efficiency of lactating sows. Journal of Animal Science, 97(2), 779-793. https://doi.org/10.1093/jas/sky462

Peltoniemi, O., Björkman, S., & Maes, D. (2016). Reproduction of group-housed sows. Porcine Health Management, 2(1), 15. https://doi.org/10.1186/s40813-016-0033-2

Quesnel, H., Boulot, S., Serriere, S., Venturi, E., & Martinat-Botté, F. (2010). Post-insemination level of feeding does not influence embryonic survival and growth in highly prolific gilts. Animal Reproduction Science, 120(1-4), 120–124. https://doi.org/10.1016/j.anireprosci.2010.04.006

Roongsitthichai, A., & Olanratmanee, E. (2021). Fetal mortality associated with backfat thickness at first mating and first farrowing of the primiparous sows raised in a commercial herd in Thailand. Tropical Animal Health and Production, 53, 175. https://doi.org/10.1007/s11250-021-02624-3

SAS Institute. (2021). SAS Users Guide: Statistics. SAS Institute.

Silveira, J., Júnior, O., Schmitz, F., Ferreira, F., Rodrigues, F., Deon, M., Ribas, G., Coutinho-Silva, R., Vargas, C., Savio, L., & Wyse, A. (2022). High-protein nutrition during pregnancy increases neuroinflammation and homocysteine levels and impairs behavior in male adolescent rats offspring. Life Sciences, 310, 121084. https://doi.org/10.1016/j.lfs.2022.121084

Spoolder, H. A. M., & Vermeer, H. M. (2015). Gestation group housing of sows. In The gestating and lactating sow (pp. 47–71). Wageningen Academic Publishers. https://doi.org/10.3920/9789086868032_004

Toplis, P., Ginesia, M. F. J., & Wrathall, A. E. (1983). The influence of high food levels in early pregnancy on embryo survival in multiparous sows. Animal Reproduction Science, 6(1), 45-48. https://doi.org/10.1017/S0003356100001513

Tummaruk, P., & Kesdangsakonwut, S. (2014). Uterine size in replacement gilts associated with age, body weight, growth rate, and reproductive status. Czech Journal of Animal Science, 59(11), 511-518.

Wang, C., Li, H., Luo, C., Li, Y., Zhang, Y., Yun, D., & et al. (2015). The effect of maternal obesity on the expression and functionality of placental P-glycoprotein: Implications in the individualized transplacental digoxin treatment for fetal heart failure. Placenta, 36, 1138–1147. https://doi.org/10.1016/j.placenta.2015.08.007

Wang, J., Yang, M., Cao, M., Lin, Y., Che, L., Duraipandiyan, V., Al-Dhabi, N. A., Fang, Z., Xu, S., Feng, B., Liu, G., & Wu, D. (2016). Moderately increased energy intake during gestation improves body condition of primiparous sows, piglet growth performance, and milk fat and protein output. Livestock Science, 194, 23–30. https://doi.org/10.1016/j.livsci.2016.01.011

Authors

S. P. Su
L. C. Hsia
lchsia@mail.npust.edu.tw (Primary Contact)
W. Jantasin
J. W. Lee
Y. D. Hsuuw
SuS. P., HsiaL. C., JantasinW., LeeJ. W., & HsuuwY. D. (2025). Early Gestation Feeding Method Improves Reproductive Performance of Sow. Tropical Animal Science Journal, 48(2), 156-162. https://doi.org/10.5398/tasj.2025.48.2.156

Article Details