Early Gestation Feeding Method Improves Reproductive Performance of Sow
Abstract
The relationship between feed intake during early gestation and sows’ reproductive performance is controversial. The purpose of this experiment was to investigate the effects of different feeding strategies during early gestation on reproductive performance in sows. A total of 24 primiparous sows were randomly assigned to one of the following three treatments: Treatment 1: Feed 1.5 kg from mating to day 30 of gestation; Treatment 2: Feed 1.5 kg from mating to day 7, then feed 2.5 kg from days 8 to 30; Treatment 3: Feed 2.5 kg from days 0 to 30. Increased feed intake affected body weight during early gestation. The treatment provided 2.5 kg per day resulted in the highest litter size. While there was no significant difference in litter size between Treatment 2 and Treatment 3, the birth weight and weaning weight of piglets in Treatment 2 seemed better than those in Treatment 3. Increasing feed intake during early gestation (days 0–30) significantly increased litter size. However, Treatment 2, which increased feed intake from days 8 to 30, improved growth performance but did not enhance reproductive performance. In conclusion, high feed intake throughout early gestation significantly increased litter size but also had the potential to increase the number of stillbirths.
References
Athorn, R. Z., Stott, P. G., Bouwman, E. G., Edwards, A. C., Blackberry, M. A., Martin, G. B., & Langendijk, P. (2013). Feeding level and dietary energy source have no effect on embryo survival in gilts, despite changes in systemic progesterone levels. Animal Production Science, 53, 30–37. https://doi.org/10.1071/AN12004
Athorn, R. Z., Stott, P., Bouwman, E. G., Edwards, A. C., Blackberry, M. A., Martin, G. B., & Langendijk, P. (2012). Feeding level and dietary energy source have no effect on embryo survival in gilts, despite changes in systemic progesterone levels. Animal Production Science, 53(1), 30-37.
Bidarimath, M., & Tayade, C. (2017). Pregnancy and spontaneous fetal loss: A pig perspective. Molecular Reproduction and Development, 84(9), 856–869. https://doi.org/10.1002/mrd.22847
Bidarimath, M., Khalaj, K., Kridli, R. T., Kan, F. W. K., Koti, M., & Tayade, C. (2017). Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: A new paradigm for conceptus endometrial cross-talk. Scientific Reports, 7, 40476. https://doi.org/10.1038/srep40476
Bruun, T. S., Bache, J. K., & Amdi, C. (2021). The effects of long- or short-term increased feed allowance prior to first service on litter size in gilts. Translational Animal Science, 5(1), txab005. https://doi.org/10.1093/tas/txab005
Che, L., Yang, Z., Xu, M., Zhang, Z., Liu, P., Xu, S., Che, L., Lin, Y., Fang, Z., Feng, B., Li, J., & Wu, D. (2015). Dietary energy intake affects fetal survival and development during early and middle pregnancy in Large White and Meishan gilts. Animal Nutrition, 1(3), 152-159. https://doi.org/10.1016/j.aninu.2015.08.009
Condous, P. C., Kirkwood, R. N., & van Wettere, W. H. E. J. (2014). The effect of pre- and post-mating dietary restriction on embryonic survival in gilts. Animal Reproduction Science, 148(3-4), 130–136. https://doi.org/10.1016/j.anireprosci.2014.06.003
Dyck, G. W., & Strain, J. H. (1983). Postmating feeding level effects on conception rate and embryonic survival in gilts. Canadian Journal of Animal Science, 63(3), 579-585. https://doi.org/10.4141/cjas83-065
Faccin, J. E. G., Tokach, M. D., Goodband, R. D., DeRouchey, J. M., Woodworth, J. C., & Gebhardt, J. T. (2022). Gilt development to improve offspring performance and survivability. Journal of Animal Science, 100(6), skac128. https://doi.org/10.1093/jas/skac128
Foxcroft, G. R. (2020). Mechanisms mediating nutritional effects on embryonic survival in pigs. Journal of Reproduction and Fertility, Supplement, 52, 47–61. https://doi.org/10.1530/biosciprocs.15.004
Ha, S. H., Choi, Y. H., Mun, J. Y., Park, S. R., Kinara, E., Park, H. J., Hong, J. S., Kim, Y. M., & Kim, J. S. (2024). Correlation between reproductive performance and sow body weight change during gestation. Journal of Animal Science and Technology, 66(3), 543–554. https://doi.org/10.5187/jast.2023.e63
Hu, J. & Yan, P. (2022). Effects of backfat thickness on oxidative stress and inflammation of placenta in large white pigs. Veterinary Sciences, 9, 302. https://doi.org/10.3390/vetsci9060302
Langendijk, P. (2015). Early gestation feeding and management for optimal reproductive performance. In C. Farmer (Ed.), The gestating and lactating sow (pp. 27–46). Wageningen Academic Press. https://doi.org/10.3920/978-90-8686-803-2_2
Langendijk, P. (2021). Latest advances in sow nutrition during early gestation. Animals, 11(6), 1720. https://doi.org/10.3390/ani11061720
Langendijk, P., Bouwman, E. G., Chen, T. Y., Koopmanschap, R. E., & Soede, N. M. (2017). Temporary undernutrition during early gestation, corpora lutea morphometrics, ovarian progesterone secretion, and embryo survival in gilts. Reproduction, Fertility and Development, 29, 1349–1355. https://doi.org/10.1071/RD15520
Leal, D. F., Muroa, B. B. D., Nichia, M., Almond, G. W., Viana, C. H. C., Vioti, G., Carnevale, R. F., & Garbossa, C. A. P. (2019). Effects of post-insemination energy content of feed on embryonic survival in pigs: A systematic review. Animal Reproduction Science, 205, 70–77. https://doi.org/10.1016/j.anireprosci.2019.04.005
Lee, J., Shin, H., Jo, J., Lee, G., & Yun, J. (2023). Large litter size increases oxidative stress and adversely affects nest-building behavior and litter characteristics in primiparous sows. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1219572
Lyderik, K. K., Østrup, E., Bruun, T. S., Amdi, C., & Strathe, A. V. (2023). Fetal and placental development in early gestation of hyper-prolific sows. Theriogenology, 197, 259-266. https://doi.org/10.1016/j.theriogenology.2022.12.002
Magnabosco, D., Bernardi, M. L., Wentz, I., Cunha, E. C. P., & Bortolozzo, F. P. (2016). Low birth weight affects lifetime productive performance and longevity of female swine. Livestock Science, 184, 119–125. https://doi.org/10.1016/j.livsci.2015.12.008
Magnabosco, D., Pereira Cunha, E. C., Bernardi, M. L., Wentz, I., & Bortolozzo, F. P. (2015). Impact of the birth weight of Landrace × Large White dam line gilts on mortality, culling, and growth performance until selection for breeding herd. Acta Scientiae Veterinariae, 43, 1–8.
Mallmann, A. L., Camilotti, E., Fagundes, D. P., Vier, C. E., Mellagi, A. P. G., Ulguim, R. R., Bernardi, M. L., Orlando, U. A. D., Gonçalves, M. A. D., Kummer, R., & Bortolozzo, F. P. (2020). Impact of feed intake during late gestation on piglet birth weight and reproductive performance: A dose-response study performed in gilts. Journal of Animal Science, 98(3), 1-8. https://doi.org/10.1093/jas/skaa034
Małopolska, M. M., Tuz, R., Lambert, B. D., Nowicki, J., & Schwarz, T. (2018). The replacement gilt: Current strategies for improvement of the breeding herd. Journal of Swine Health and Production, 26, 208–214. https://doi.org/10.54846/jshap/1046
Mattos, F. C. S. Z., Canavessi, A. M. O., Wiltbank, M. C., Bastos, M. R., Lemes, A. P., Mourão, G. B., Susin, I., Coutinho, L. L., & Sartori, R. (2017). Investigation of mechanisms involved in regulation of progesterone catabolism using an overfed versus underfed ewe-lamb model. Journal of Animal Science, 95(12), 5537–5546. https://doi.org/10.2527/jas2017.1719
Muns, R., Nuntapaitoon, M., & Tummaruk, P. (2015). Non-infectious causes of pre-weaning mortality in piglets. Livestock Science, S1871-1413(15)30051-2. https://doi.org/10.1016/j.livsci.2015.11.025
Muro, B. B., Carnevale, R. F., Leal, D. F., Almond, G. W., Monteiro, M. S., Poor, A. P., Schinckel, A. P., & Garbossa, C. A. (2023). The importance of optimal body condition to maximise reproductive health and perinatal outcomes in pigs. Nutrition Research Reviews, 36(2), 351–371. https://doi.org/10.1017/S0954422422000129
Okada, H., Tsuzuki, T., & Murata, H. (2018). Decidualization of the human endometrium. Reproductive Medicine and Biology, 17, 220–227. https://doi.org/10.1002/rmb2.12088
Parr, R. A., Davis, I. F., Miles, M. A., & Squires, T. J. (1993). Liver blood flow and metabolic clearance rate of progesterone in sheep. Research in Veterinary Science, 55(3), 311–316. https://doi.org/10.1016/0034-5288(93)90100-T
Pedersen, T. F., Chang, C. Y., Trottier, N. L., Bruun, T. S., & Theil, P. K. (2019). Effect of dietary protein intake on energy utilization and feed efficiency of lactating sows. Journal of Animal Science, 97(2), 779-793. https://doi.org/10.1093/jas/sky462
Peltoniemi, O., Björkman, S., & Maes, D. (2016). Reproduction of group-housed sows. Porcine Health Management, 2(1), 15. https://doi.org/10.1186/s40813-016-0033-2
Quesnel, H., Boulot, S., Serriere, S., Venturi, E., & Martinat-Botté, F. (2010). Post-insemination level of feeding does not influence embryonic survival and growth in highly prolific gilts. Animal Reproduction Science, 120(1-4), 120–124. https://doi.org/10.1016/j.anireprosci.2010.04.006
Roongsitthichai, A., & Olanratmanee, E. (2021). Fetal mortality associated with backfat thickness at first mating and first farrowing of the primiparous sows raised in a commercial herd in Thailand. Tropical Animal Health and Production, 53, 175. https://doi.org/10.1007/s11250-021-02624-3
SAS Institute. (2021). SAS Users Guide: Statistics. SAS Institute.
Silveira, J., Júnior, O., Schmitz, F., Ferreira, F., Rodrigues, F., Deon, M., Ribas, G., Coutinho-Silva, R., Vargas, C., Savio, L., & Wyse, A. (2022). High-protein nutrition during pregnancy increases neuroinflammation and homocysteine levels and impairs behavior in male adolescent rats offspring. Life Sciences, 310, 121084. https://doi.org/10.1016/j.lfs.2022.121084
Spoolder, H. A. M., & Vermeer, H. M. (2015). Gestation group housing of sows. In The gestating and lactating sow (pp. 47–71). Wageningen Academic Publishers. https://doi.org/10.3920/9789086868032_004
Toplis, P., Ginesia, M. F. J., & Wrathall, A. E. (1983). The influence of high food levels in early pregnancy on embryo survival in multiparous sows. Animal Reproduction Science, 6(1), 45-48. https://doi.org/10.1017/S0003356100001513
Tummaruk, P., & Kesdangsakonwut, S. (2014). Uterine size in replacement gilts associated with age, body weight, growth rate, and reproductive status. Czech Journal of Animal Science, 59(11), 511-518.
Wang, C., Li, H., Luo, C., Li, Y., Zhang, Y., Yun, D., & et al. (2015). The effect of maternal obesity on the expression and functionality of placental P-glycoprotein: Implications in the individualized transplacental digoxin treatment for fetal heart failure. Placenta, 36, 1138–1147. https://doi.org/10.1016/j.placenta.2015.08.007
Wang, J., Yang, M., Cao, M., Lin, Y., Che, L., Duraipandiyan, V., Al-Dhabi, N. A., Fang, Z., Xu, S., Feng, B., Liu, G., & Wu, D. (2016). Moderately increased energy intake during gestation improves body condition of primiparous sows, piglet growth performance, and milk fat and protein output. Livestock Science, 194, 23–30. https://doi.org/10.1016/j.livsci.2016.01.011
Authors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.