Morphological and Molecular Diversity of Five Superior Napier Grass Cultivars in Indonesia

M. D. M. Nasution, N. Umami, A. Kurniawati, M. M. Rahman

Abstract

This study aimed to evaluate the morphological and genetic diversity among five cultivars of Napier grass (Pennisetum purpureum) grown in Indonesia: ‘Gama Umami’, ‘Pakchong’, ‘Odot’, ‘Purple’, and ‘Local’. A total of 20 plants per cultivar were planted in a completely randomized design with morphological parameters, nutrient content, biomass production, and molecular analysis assessed at a cutting age of 90 days. The morphological analysis revealed significant differences (p<0.05) in plant height, leaf length, and the number of tillers across the cultivars. Qualitative analysis revealed differences in leaf color and growth habits. ‘Gama Umami’ cultivar showed the highest biomass yield, with significantly (p<0.05) higher crude protein and dry matter content than the other cultivars. Random amplified polymorphic DNA (RAPD) analysis using nine primers on the five Napier grass cultivars demonstrated diverse band patterns, resulting in a percentage of polymorphic bands (PBP) ranging from 60% to 100%. The dendrogram derived from the RAPD data clustered the cultivars into two main groups, with ‘Gama Umami’ and ‘Local’ showing a high similarity coefficient of 0.73, while ‘Purple’ and ‘Pakchong’ formed a distinct sub-cluster with a similarity coefficient of 0.66, and ‘Odot’ exhibited a similarity coefficient of 0.58 with the ‘Purple’ and ‘Pakchong’ sub-cluster. This study revealed significant genetic and morphological diversity among five Napier grass cultivars, with 'Gama Umami' demonstrating superior morphological traits, nutrient content, and biomass production. These findings highlight the potential of integrating molecular and morphological analyses to support breeding programs for improving forage quality and productivity.

References

Ampong-Nyarko, K. & Murray, C. (2011). Utility of forage grass nutrient composition databases in predicting ethanol production potential. Journal of Biobased Materials and Bioenergy, 5, 295–305. https://doi.org/10.1166/jbmb.2011.1167

Animasaun, D. A., Rathod, H. P., & Krishnamurthy, R. (2018). Analysis of forage yield and nutritional contents of Pennisetum glaucum (pearl millet) and Pennisetum purpureum (Napier grass) accessions. Cuban Journal of Agricultural Science, 52(4), 447-455.

Animasaun, D., Morakinyo, J., Krishnamurthy, R., & Mustapha, O. (2017). Genetic divergence of Nigerian and Indian pearl millet accessions based on agronomical and morphological traits. Journal of Agricultural Sciences, Belgrade, 62(2), 115–131. https://doi.org/10.2298/JAS1702115A

AOAC. (2005). Official methods of analysis (16th ed.). Association of Official Analytical Chemists, International.

Arif, I. A., Bakir, M. A., Khan, H. A., Al Farhan, A. H., Al Homaidan, A. A., Bahkali, A. H., Al Sadoon, M., & Shobrak, M. (2010). Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment. Genetics and Molecular Research, 9(4), 2191–2198. https://doi.org/10.4238/vol9-4gmr848

Azevedo, A. L. S., Costa, P. P., Machado, J. C., Machado, M. A., Van der Pereira, A., & da Silva Lédo, F. J. (2012). Cross species amplification of Pennisetum glaucum microsatellite markers in Pennisetum purpureum and genetic diversity of Napier grass accessions. Crop Science, 52(4), 1776–1785. https://doi.org/10.2135/cropsci2011.09.0480

Babu, C., Sundaramoorthi, J., Vijayakumar, G., & Ram, S. G. (2009). Analysis of genetic diversity in Napier grass (Pennisetum purpureum Schum) as detected by RAPD and ISSR markers. Journal of Plant Biochemistry and Biotechnology, 18(2), 181–187. https://doi.org/10.1007/BF03263317

Calzada-Marín, J. M., Ortega-Jiménez, E., Enríquez-Quiroz, J. F., Vaquera-Huerta, H., Escalante-Estrada, J. A. S., & Antonio-Medina, A. (2024). Analysis of the growth of Chetumal grass established in a tropical climate. Agro Productividad, 16(12), 147-153. https://doi.org/10.32854/agrop.v16i12.2781

Cid, M. S., Ferri, C. M., Brizuela, M. A., & Sala, O. (2008). Structural heterogeneity and productivity of a tall fescue pasture grazed rotationally by cattle at four stocking densities. Japanese Society of Grassland Science, 54(1), 9–16. https://doi.org/10.1111/j.1744-697X.2008.00099.x

de Lima, R. S. N., Daher, R. F., Gonçalves, L. S. A., Rossi, D. A., do Amaral Júnior, A. T., Pereira, M. G., & Lédo, F. J. S. (2011). RAPD and ISSR markers in the evaluation of genetic divergence among accessions of elephant grass. Genetics and Molecular Research, 10(3), 1304–1313. https://doi.org/10.4238/vol10-3gmr1107

Delevatti, L. M., Cardoso, A. S., Barbero, R. P., Leite, R. G., Romanzini, E. P., Ruggieri, A. C., & Reis, R. A. (2019). Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Scientific Reports, 9(1), 7596. https://doi.org/10.1038/s41598-019-44138-x

Dhakshanamoorthy, D., Selvaraj, R., & Chidambaram, A. (2015). Utility of RAPD marker for genetic diversity analysis in gamma rays and ethyl methane sulphonate (EMS)-treated Jatropha curcas plants. Comptes Rendus - Biologies, 338(2), 75–82. https://doi.org/10.1016/j.crvi.2014.12.002

Doyle, J. J. & Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13–15.

Ernawati, A., Abdullah, L., Permana, I. G., & Karti, P. D. M. H. (2023). Forage production and nutrient content of different elephant grass varieties cultivated with Indigofera zollingeriana in an intercropping system. Tropical Animal Science Journal, 46(3), 321–329. https://doi.org/10.5398/tasj.2023.46.3.321

Figueiredo Daher, R., Gonzaga Pereira, M., Vander Pereira, A., & Teixeira do Amaral Jr, A. (2002). Genetic divergence among elephant grass cultivars assessed by RAPD markers in composit samples. Scientia Agricola, 59(4), 623–627. https://doi.org/10.1590/S0103-90162002000400001

González, C. & Martínez, R. O. (2019). Genetic characterization of clones and varieties of Cenchrus purpureus with microsatellite markers. Cuban Journal of Agricultural Science, 53(3), 307-318.

Hapsoro, D., Warganegara, H. A., Utomo, S. D., Sriyani, N., & Yusnita. (2015). Genetic diversity among sugarcane (Saccharum officinarum L.) genotypes as shown by randomly amplified polymorphic DNA (RAPD). Agrivita, 37(3), 247–257. https://doi.org/10.17503/Agrivita-2015-37-3-p247-257

Hartadi, H., Reksohadiprojo, S., & Tillman, A. D. (2005). Feed composition table for Indonesia: Vol. Fifth Printing. Gadjah Mada University Press.

Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programs. Journal of Genetic Engineering and Biotechnology, 19(1), 128. https://doi.org/10.1186/s43141-021-00231-1

Hazelton, P. & Murphy, B. (2016). Interpreting soil test results: what do all the numbers mean? (2nd ed.). CSIRO Publishing. https://doi.org/10.1071/9781486303977

Islam, M. R., Garcia, S. C., Sarker, N. R., Islam, M. A., & Clark, C. E. F. (2023). Napier grass (Pennisetum purpureum Schum) management strategies for dairy and meat production in the tropics and subtropics: yield and nutritive value. Frontiers in Plant Science, 14, 1269976. https://doi.org/10.3389/fpls.2023.1269976

Jaime, A., Rosemberg, M., & Echevarría, M. (2019). Effect of age and season on the yield and nutritive value of Morado elephant grass (Pennisetum purpureum x Pennisetum americanum) in the central coast. Scientia Agropecuaria, 10(1), 137–141. https://doi.org/10.17268/sci.agropecu.2019.01.15

Kamal, M. (1997). Kontrol Kualitas Pakan. Fakultas Peternakan, Universitas Gadjah Mada.

Kamruzali, M. A., Rahman, M. M., Mat, K., Rusli, N. D., & Umami, N. (2021). Effects of cutting process and drying period using sunlight on hay quality of dwarf Napier grass (Pennisetum purpureum) and Asystasia gangetica. Pertanika Journal of Tropical Agricultural Science, 44(3), 685–695.

Kandel, R., Singh, H. P., Singh, B. P., Harris-Shultz, K. R., & Anderson, W. F. (2016). Assessment of genetic diversity in Napier grass (Pennisetum purpureum Schum.) using microsatellite, single-nucleotide polymorphism and insertion-deletion markers from Pearl Millet (Pennisetum glaucum [L.] R. Br.). Plant Molecular Biology Reporter, 34(1), 265–272. https://doi.org/10.1007/s11105-015-0918-2

Korir, N. K., Han, J., Shangguan, L., Wang, C., Kayesh, E., Zhang, Y., & Fang, J. (2013). Plant variety and cultivar identification: Advances and prospects. Critical Reviews in Biotechnology, 33(2), 111–125. https://doi.org/10.3109/07388551.2012.675314

Kumari, N. & Thakur, S. K. (2014). Randomly amplified polymorphic DNA-a brief review. American Journal of Animal and Veterinary Sciences, 9(1), 6–13. https://doi.org/10.3844/ajavsp.2014.6.13

Mansyur, Karti, P. M., Abdullah, L., Husni, A. L. I., & Lestari, P. (2019). Genetic diversity of mutant napiergrass using expressed sequence tag simple sequence repeat (EST-SSR). Biodiversitas, 20(8), 2403–2409. https://doi.org/10.13057/biodiv/d200839

McBenedict, B., Chimwamurombe, P., Kwembeya, E., & Maggs-Kölling, G. (2016). Genetic diversity of Namibian Pennisetum glaucum (L.) R. BR. (Pearl Millet) landraces analyzed by SSR and morphological markers. Scientific World Journal, 1439739. https://doi.org/10.1155/2016/1439739

Mudhita, I. K., Putra, R. A., Rahman, M. M., Widyobroto, B. P., Agussalim, & Umami, N. (2024). The Silage quality of Pennisetum purpureum cultivar Gamma Umami mixed with Calliandra calothyrsus and Lactiplantibacillus plantarum. Tropical Animal Science Journal, 47(1), 112–124. https://doi.org/10.5398/tasj.2024.47.1.112

Muktar, M. S., Bizuneh, T., Anderson, W., Assefa, Y., Negawo, A. T., Teshome, A., Habte, E., Muchugi, A., Feyissa, T., & Jones, C. S. (2023). Analysis of global Napier grass (Cenchrus purpureus) collections reveals high genetic diversity among genotypes with some redundancy between collections. Scientific Reports, 13(1), 14509. https://doi.org/10.1038/s41598-023-41583-7

Negawo, A. T., Teshome, A., Kumar, A., Hanson, J., & Jones, C. S. (2017). Opportunities for napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy, 7(2), 28. https://doi.org/10.3390/agronomy7020028

Onjai-uea, N., Paengkoum, S., Taethaisong, N., Thongpea, S., Sinpru, B., Surakhunthod, J., Meethip, W., Purba, R. A. P., & Paengkoum, P. (2023). Effect of cultivar, plant spacing and harvesting age on yield, characteristics, chemical composition, and anthocyanin composition of purple Napier grass. Animals, 13(1), 10. https://doi.org/10.3390/ani13010010

Passos, L. P., Machado, M. A., Vidigal, M. C., & Campos, A. L. (2005). Molecular characterization of elephant grass accessions through RAPD markers. Ciência e Agrotecnologia, 29(3), 568–574. https://doi.org/10.1590/S1413-70542005000300009

Pinchi-Carbajal, S. F., Quispe-Ccasa, H. A., Ampuero-Trigoso, G., Nolasco-Lozano, E., & Saucedo-Uriarte, J. A. (2024). Morphological and productive correlations of cutting Pennisetum varieties under conditions of peruvian humid tropics. Tropical Animal Science Journal, 47(3), 363–370. https://doi.org/10.5398/tasj.2024.47.3.363

Respati, A. N., Umami, N., & Hanim, C. (2018). Growth and production of Brachiaria brizantha cv. MG5 in three different regrowth phases treated by Gamma radiation dose. Tropical Animal Science Journal, 41(3), 179–184. https://doi.org/10.5398/tasj.2018.41.3.179

Rocha, J. R. A. S. C., Machado, J. C., Carneiro, P. C. S., Carneiro, J. C., Resende, M. D. V., Lédo, F. J. S., & Carneiro, J. E. S. (2017). Bioenergetic potential and genetic diversity of elephantgrass via morpho-agronomic and biomass quality traits. Industrial Crops and Products, 95, 485–492. https://doi.org/10.1016/j.indcrop.2016.10.060

Rodrigues, R. C., Sousa, T. V. R., Melo, M. A. A., Araújo, J. S., Lana, R. P., Costa, C. S., Oliveira, M. E., Parente, M. O. M., & Sampaio, I. B. M. (2014). Agronomic, morphogenic and structural characteristics of tropical forage grasses in northeast Brazil. Tropical Grasslands-Forrajes Tropicales 2(2), 214-222. https://doi.org/10.17138/TGFT(2)214-222

Rohlf, F. J. (2000). NTSYS-pc: numerical taxonomy and multivariate analysis system version 2.1. Exeter Publishing Setauket.

Steel, R. G. D., Torrie, J. H., & Dicky, D. A. (1997). Principles and procedures of statistics, a biometrical approach (3rd ed.). McGraw Hill, Inc. Book Co.

Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839–852. https://doi.org/10.1002/csc2.20377

Tilahun, G., Asmare, B., & Mekuriaw, Y. (2017). Effects of harvesting age and spacing on plant characteristics, chemical composition and yield of desho grass (Pennisetum pedicellatum Trin.) in the highlands of Ethiopia. Tropical Grasslands-Forrajes Tropicales, 5(2), 77–84. https://doi.org/10.17138/TGFT(5)77-84

Umami, N., Respati, A. N., Rahman, M. M., Umpuch, K., & Gondoe, T. (2022). Somatic embryogenesis and plant regeneration from the apical meristem of Wrukwona Napiergrass (Pennisetum purpureum) treated with thidiozuron and cupric sulfate. Tropical Animal Science Journal, 45(2), 220–226. https://doi.org/10.5398/tasj.2022.45.2.220

UPOV. (2010). Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability: TG/260/1. International Union for the Protection of New Varieties of Plants: Geneve, Switzerland. https://www.upov.int/edocs/tgdocs/en/tg260.pdf

Wahyudi, D., Hapsari, L., & Sundari. (2020). RAPD analysis for genetic variability detection of mutant soybean (Glycine max (L.) Merr). Journal of Tropical Biodiversity and Biotechnology, 5(1), 68–77. https://doi.org/10.22146/jtbb.53653

Wanjala, B. W., Obonyo, M., Wachira, F. N., Muchugi, A., Mulaa, M., Harvey, J., Skilton, R. A., Proud, J., & Hanson, J. (2013). Genetic diversity in Napier grass (Pennisetum purpureum) cultivars: implications for breeding and conservation. AoB Plants, 5, 1-10. https://doi.org/10.1093/aobpla/plt022

Yongjun, F., Wei, T., Jinhua, S., Tianjing, Z., Rui, Q., Bo, X., Cunyu, Z., Zhixiong, L., & Anna, Y. T. (2014). Application of random amplified polymorphic DNA (RAPD) markers to identify Taxus chinensis var. mairei cultivars associated with parthenogenesis. African Journal of Biotechnology, 13(24), 2385–2393. https://doi.org/10.5897/AJB2014.13646

Zakiyah, N. M., Handoyo, T., & Kim, K. M. (2019). Genetic diversity analysis of Indonesian aromatic rice varieties (Oryza sativa L.) using RAPD. Journal of Crop Science and Biotechnology, 22(1), 55–63. https://doi.org/10.1007/s12892-018-0271-0

Authors

M. D. M. Nasution
N. Umami
nafiatul.umami@ugm.ac.id (Primary Contact)
A. Kurniawati
M. M. Rahman
NasutionM. D. M., UmamiN., KurniawatiA., & RahmanM. M. (2025). Morphological and Molecular Diversity of Five Superior Napier Grass Cultivars in Indonesia. Tropical Animal Science Journal, 48(1), 8-18. https://doi.org/10.5398/tasj.2025.48.1.8

Article Details