Improving Meat Quality and Reducing Breast of Myopathies in Broiler Chickens Subjected to Cyclic Heat Stress by Supplementing of Chromium-Methionine

G. L. S. Tesser, N. Rohloff Junior, T. S. Andrade, C. Kaufmann, A. P. G. C. Costa, M. F. C. Pereira, A. A. Calderano, F. S. Dadólio, E. S. Klosowski, C. Eyng, R. V. Nunes

Abstract

Chromium-methionine (CrMet) provides essential nutrients and bioactive compounds that may enhance meat quality and reduce stress-related issues in broiler chicken. This study aimed to evaluate the effects of chromium-methionine on carcass yield, relative weights of the liver and fat pad, incidence and severity of myopathies, muscle color quantification, water-holding capacity, cooking loss, shear force, lipid peroxidation in breast muscle, and composition of breast meat in broiler chickens subjected to cyclic heat stress. A total of 1,000 one-day-old male Cobb 500 broiler chickens were divided into 10 replicate pens with 20 birds each, following a completely randomized design with five doses of dietary treatments (0; 0.25; 0.50; 1.0; and 2.0 mg CrMet kg-1 diet). Experimental broiler chickens were kept in thermoneutral conditions for 21 days, then subjected to cyclic heat stress (31.1 °C and 60.2% humidity) from 09:00 am to 03:00 pm until 42 days of age. Statistical analysis included Tukey’s test and regression analysis. Myopathy scores were assessed using the Kruskal-Wallis test and Dunn’s test, all at a significant level of 5%. Inclusion of 0.50 and 1.0 mg CrMet reduced woody breast severity scores. At 15 minutes postmortem, birds fed 0.50 mg CrMet had less redness (a*) than controls and birds fed 2.0 mg CrMet; birds fed 2.0 mg CrMet had lower lightness (L*) than those fed 0.25 and 1.0 mg CrMet. Lipid peroxidation was lower in birds fed 0.50 mg CrMet at 60 days compared to control. Crude fat was lower in birds fed 1.0 mg CrMet. Chromium-methionine supplementation at 0.50 and 1.0 mg/kg diet improved meat quality and reduced woody breast in broiler chickens.

References

Amini, M. R., Sheikhhossein, F., Djafari, F., Jafari, A., Djafarian, K., & Shab-Bidar, S. (2023). Effects of chromium supplementation on oxidative stress biomarkers. International Journal for Vitamin and Nutrition Research, 93(3), 241-251. https://doi.org/10.1024/0300-9831/a000706

An, J., Kim, Y., Song, M., Choi, J., Oh, H., Chang, S., Song, D., Cho, H., Park, S., Jeon, K., Park, Y., Park, G., Oh, S., Kim, Y., Choi, N., Kim, J., Kim, H., & Cho, J. (2023). Effects of different levels of organic chromium and selenomethionine cocktails in broilers. Journal of Animal Science and Technology, 65(6), 1226–1241. https://doi.org/10.5187/jast.2023.e32

Arif, M., Hussain, I., Mahmood, M. A., Abd El-Hack, M. E., Swelum, A. A., Alagawany, M., Mahmoud, A. H., Ebaid, H., & Komany, A. (2019). Effect of varying levels of chromium propionate on growth performance and blood biochemistry of broilers. Animals, 9(11), 935. https://doi.org/10.3390/ani9110935

Aslam, M. A., İpek, E., Riaz, R., Ӧzsoy, Ş. Y., Shahzad, W., & Güleş, Ӧ. (2021). Exposure of broiler chickens to chronic heat stress increases the severity of white striping on the pectoralis major muscle. Tropical Animal Health and Production, 53(5), 502. https://doi.org/10.1007/s11250-021-02950-6

Association of Official Analytical Chemists - AOAC. (1990). Official methods of analysis 934.01 for dry matter on oven drying at 95-100° C (15th ed). AOAC International.

Association of Official Analytical Chemists - AOAC. (2005a). Official methods of analysis 942.05 for total ash (18th ed). AOAC International.

Association of Official Analytical Chemists - AOAC. (2005b). Official methods of analysis 954.02 for crude fat (18th ed). AOAC International.

Association of Official Analytical Chemists - AOAC. (2005c). Official methods of analysis 981.10 for crude protein (18th ed). AOAC International.

Barzegar-Yarmohammadi, A., Sharifi, S. D., & Mohammadi-Sangcheshmeh, A. (2020). Efficacy of dietary supplementation of nanoparticles-chromium, chromium-methionine and zinc-proteinate, on performance of Japanese quail under physiological stress. Italian Journal of Animal Science, 19(1), 1122–1133. https://doi.org/10.1080/1828051X.2020.1822763

Dalólio, F. S., Albino, L. F. T., de Oliveira, H. C., Fireman, A. K. B. A. T., Burin Junior, A., Busanello, M., Rohloff Junior, N., Silva Tesser, G. L., & Nunes, R. V. (2024). Dietary chromium-methionine supplementation and broiler (22–43 days) responses during heat stress. 2 - Physiological variables, and heat shock protein 70 and insulin-like growth factor-1 gene expression. Animal Production Science, 64(7), AN23354. https://doi.org/10.1071/AN23354

Dalólio, F. S., Albino, L. F. T., Fireman, A. K. B. A. T., Burin Júnior, A. M., Busanello, M., Calderano, A. A., Ribeiro Júnior, V., & Rostagno, H. S. (2021). Effect of chromium-methionine supplementation on meat quality of broilers reared under heat stress. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 73(4), 995–999. https://doi.org/10.1590/1678-4162-12235

Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: a review. Veterinary World, 9(3), 260–268. https://doi.org/10.14202/vetworld.2016.260-268

de Souza, C., Eyng, C., Viott, A. M., de Avila, A. S., Pacheco, W. J., Junior, N. R., Kohler, T. L., Tenorio, K. I., Cirilo, E. H., & Nunes, R. V. (2021). Effect of dietary guanidinoacetic acid or nucleotides supplementation on growth performances, carcass traits, meat quality and occurrence of myopathies in broilers. Livestock Science, 251, 104659. https://doi.org/10.1016/j.livsci.2021.104659

Ebrahimzadeh, S. K., Farhoomand, P., & Noori, K. (2011). Immune response of broiler chickens fed diets supplemented with different level of chromium methionine under heat stress conditions. Asian-Australasian Journal of Animal Sciences, 25(2), 256–260. https://doi.org/10.5713/ajas.2011.11217

El-Tarabany, M. S., Ahmed-Farid, O. A., Nassan, M. A., & Salah, A. S. (2021). Oxidative stability, carcass traits, and muscle fatty acid and amino acid profiles in heat-stressed broiler chickens. Antioxidants, 10(11), 1725. https://doi.org/10.3390/antiox10111725

Fathi, M., Saeedyan, S., & Kaoosi, M. (2023). Effect of melatonin on oxidative stress, inflammation cytokines, biochemical parameters and growth performance in broiler chicken under induced stress by dexamethasone. Acta Agricultura e Scandinavica, 72(3–4), 149–157. https://doi.org/10.1080/09064702.2023.2222733

Fraz, A., Parker, N. B., Löhr, C. V., & Cherian, G. (2023). Evaluating the impact of organic chromium with flax seed in broiler diets: effects on production performance, breast muscle pathology, and meat quality aspects. Poultry Science, 102(2), 102331. https://doi.org/10.1016/j.psj.2022.102331

Han, M., Chen, Y., Li, J., Dong, Y., Miao, Z., Li, J., & Zhang, L. (2021). Effects of organic chromium sources on growth performance, lipid metabolism, antioxidant status, breast amino acid and fatty acid profiles in broilers. Journal of the Science of Food and Agriculture, 101(9), 3917–3926. https://doi.org/10.1002/jsfa.11053

Haq, Z., Khan, N., & Rashid, S. M. (2018). Dietary supplementation of chromium yeast alone and in combination with antioxidants for designing broiler meat. Entomology and Zoology Studies, 6(1), 766-770.

Hayat, K., Bodinga, B. M., Han, D., Yang, X., Sun, Q., Aleya, L., Abdel-Daim, M. M., & Yang, X. (2020). Effects of dietary inclusion of chromium propionate on growth performance, intestinal health, immune response and nutrient transporter gene expression in broilers. Science of The Total Environment, 705, 135869. https://doi.org/10.1016/j.scitotenv.2019.135869

Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447–457. https://doi.org/10.1016/S0309-1740(98)00034-5

Hoseini, S. K., Sharifi, S. D., Bagheri Varzaneh, M., & Ghazanfari, S. (2020). Effect of particle size of chromium-methionine supplement on growth performance, carcass traits and meat quality in broiler chicks under physiological stress. Animal Production Research, 9(3), 31–45.

Huang, Y. L., Luo, Q. H., Xiao, F., Lin, X., & Spears, J. W. (2020). Research Note: responses of growth performance, immune traits, and small intestinal morphology to dietary supplementation of chromium propionate in heat-stressed broilers. Poultry Science, 99(10), 5070–5073. https://doi.org/10.1016/j.psj.2020.07.005

Huang, Y., Yang, J., Xiao, F., Lloyd, K., & Lin, X. (2016). Effects of supplemental chromium source and concentration on growth performance, carcass traits, and meat quality of broilers under heat stress conditions. Biological Trace Element Research, 170(1), 216–223. https://doi.org/10.1007/s12011-015-0443-z

Kazakova, T., & Marshinskaia, O. (2023). Effects of the combined use of a probiotic and chromium methionine chelate on the functional state of broiler chickens. Veterinary World, 16(11), 2358–2365. https://doi.org/10.14202/vetworld.2023.2358-2365

Khan, I. A., Parker, N. B., Löhr, C. V., & Cherian, G. (2021). Docosahexaenoic acid (22:6 n-3)-rich microalgae along with methionine supplementation in broiler chickens: effects on production performance, breast muscle quality attributes, lipid profile, and incidence of white striping and myopathy. Poultry Science, 100(2), 865–874. https://doi.org/10.1016/j.psj.2020.10.069

Khalifah, M., Kashyout, A. A., Abdalla, W. A., Zeweil, S. S., Zahran, H. M., Ebeid, S. A., & Dosoky, W. M. (2021). Leverage of chromium methionine supplementation in laying Japanese quail’s diets on performance, quality, and blood traits challenged by heat stress. Advances in Animal and Veterinary Sciences, 10(3), 676-684. https://doi.org/10.17582/journal.aavs/2022/10.3.676.684

Kuttappan, V. A., Manangi, M., Bekker, M., Chen, J., & Vazquez-Anon, M. (2021). Nutritional intervention strategies using dietary antioxidants and organic trace minerals to reduce the incidence of wooden breast and other carcass quality defects in broiler birds. Frontiers in Physiology, 12, 663409. https://doi.org/10.3389/fphys.2021.663409

Lu, Z., He, X., Ma, B., Zhang, L., Li, J., Jiang, Y., Zhou, G., & Gao, F. (2017). chronic heat stress impairs the quality of breast-muscle meat in broilers by affecting redox status and energy-substance metabolism. Journal of Agricultural and Food Chemistry, 65(51), 11251–11258. https://doi.org/10.1021/acs.jafc.7b04428

Mazhari, M., & Ranjbari-Nasab, Z. (2022). Effect of organic selenium and chromium supplementation on growth performance, carcass characteristics and meat quality of broiler chickens. Animal Production, 24, 165–175.

Mir, S. H., Ravi, P. P., Veena, M., Tariq, A. M., Lamella, O., & Shimla, Y. (2018). Role of dietary minerals in heat-stressed poultry: a review. Journal of Entomology and Zoology Studies, 6(5), 820–826.

Nadaf Fahmideh, M., Seidavi, A., & Bouyeh, M. (2023). The effect of different levels of vitamin C and chromium on growth performance, carcass characteristics, digestive organs, immunity, blood constituents, liver enzymes, cecal microflora, meat sensory taste and fatty acid profile of breast meat in broilers. Veterinary Medicine and Science, 9(6), 2763–2780. https://doi.org/10.1002/vms3.1300

Nakamura, M., & Katoh, K. (1981). Influence of thawing methods on several properties of rabbit meat. Bulletin of Ishikawa Prefecture College of Agriculture.

Piray, A., & Foroutanifar, S. (2022). Chromium supplementation on the growth performance, carcass traits, blood constituents, and immune competence of broiler chickens under heat stress: a systematic review and dose–response meta-analysis. Biological Trace Element Research, 200(6), 2876–2888. https://doi.org/10.1007/s12011-021-02885-x

Rostagno, H. S., Albino, L. F. T., Calderano, A. A., Hanas, M. I., Sakomura, N. K., Perazzo, F., Rocha, G. C., Saraiva, A., Abreu, M. L. T., Genova, J. L., & Tavernari, F. C. (2024). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. Suprema 5.

Safwat, A. M., Elnaggar, A. S., Elghalid, O. A., & EL‐Tahawy, W. S. (2020). Effects of different sources and levels of dietary chromium supplementation on performance of broiler chicks. Animal Science Journal, 91(1), e13448. https://doi.org/10.1111/asj.13448

Sahin, N., Hayirli, A., Orhan, C., Tuzcu, M., Akdemir, F., Komorowski, J. R., & Sahin, K. (2017). Effects of the supplemental chromium form on performance and oxidative stress in broilers exposed to heat stress. Poultry Science, 96(12), 4317–4324. https://doi.org/10.3382/ps/pex249

Sahin, N., Hayirli, A., Orhan, C., Tuzcu, M., Komorowski, J. R., & Sahin, K. (2018). Effects of the supplemental chromium form on performance and metabolic profile in laying hens exposed to heat stress. Poultry Science, 97(4), 1298–1305. https://doi.org/10.3382/ps/pex435

Saracila, M., Panaite, T. D., Mironeasa, S., & Untea, A. E. (2021). Dietary supplementation of some antioxidants as attenuators of heat stress on chicken meat characteristics. Agriculture, 11(7), 638. https://doi.org/10.3390/agriculture11070638

Saracila, M., Untea, A. E., Panaite, T. D., Varzaru, I., Oancea, A-G., Turcu, R. P., & Vlaicu, P. A. (2022). Effects of supplementing sea buckthorn leaves (Hippophae rhamnoides L.) and chromium (III) in broiler diet on the nutritional quality and lipid oxidative stability of meat. Antioxidants, 11(11), 2220. https://doi.org/10.3390/antiox11112220

SAS Institute. (2014). SAS University Edition: Installation Guide for Windows. SAS Institute Inc. Retrieved April 20, 2024, from https://support.sas.com/documentation/installcenter/en/ueclientswn/67533/PDF/default/sasuniversityedition.pdf

Shakeri, M., Cottrell, J. J., Wilkinson, S., Le, H. H., Suleria, H. A. R., Warner, R. D., & Dunshea, F. R. (2019). Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants, 8(9), 336. https://doi.org/10.3390/antiox8090336

Silva, D. J., & Queiroz, A. C. (2009). Análise de alimentos: métodos químicos e biológicos (3rd ed), Impresiana. Universitária da UFV, Viçosa, 235 p.

Sorensen, G., & Jorgensen, S. S. (1996). A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 202(3), 205-210. https://doi.org/10.1007/BF01263541

Tijare, V. V., Yang, F. L., Kuttappan, V. A., Alvarado, C. Z., Coon, C. N., & Owens, C. M. (2016). Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies. Poultry Science, 95(9), 2167–2173. https://doi.org/10.3382/ps/pew129

Toghyani, M., Toghyani, M., Shivazad, M., Gheisari, A., & Bahadoran, R. (2012). Chromium supplementation can alleviate the negative effects of heat stress on growth performance, carcass traits, and meat lipid oxidation of broiler chicks without any adverse impacts on blood constituents. Biological Trace Element Research, 146(2), 171-180. https://doi.org/10.1007/s12011-011-9234-3

Untea, A. E., Panaite, T. D., Dragomir, C., Ropota, M., Olteanu, M., & Varzaru, I. (2019). Effect of dietary chromium supplementation on meat nutritional quality and antioxidant status from broilers fed with Camelina-meal-supplemented diets. Animal, 13(12), 2939-2947. https://doi.org/10.1017/S1751731119001162

Untea, A. E., Varzaru, I., Turcu, R. P., Panaite, T. D., & Saracila, M. (2021). The use of dietary chromium associated with vitamins and minerals (synthetic and natural source) to improve some quality aspects of broiler thigh meat reared under heat stress condition. Italian Journal of Animal Science, 20(1), 1491–1499. https://doi.org/10.1080/1828051X.2021.1978335

Van Hoeck, V., Sonawane, M., Gonzalez Sanchez, A. L., Van Dosselaer, I., Buyens, C., & Morisset, D. (2020). Chromium propionate improves performance and carcass traits in broilers. Animal Nutrition, 6(4), 480-487. https://doi.org/10.1016/j.aninu.2020.03.005

Vyncke, W. (1975). Evaluation of the direct thiobarbituric acid extraction method for determining oxidative rancidity in mackerel (Scomber scombrus L.). Fette, Seifen, Anstrichmittel, 77(6), 239–240. https://doi.org/10.1002/lipi.19750770610

Waleed, M. D., Soliman, M. Z., Samia, M. G., & Mohamed, M. K. (2024). Effect of cr-methionine and peppermint oil on the productive performance of broiler chicks raised under heat stress conditions. Egyptian Poultry Science Journal, 44(2), 219-229. https://doi.org/10.21608/epsj.2024.362994

White, P. E., & Vincent, J. B. (2019). Systematic review of the effects of chromium (III) on chickens. Biological Trace Element Research, 188(1), 99-126. https://doi.org/10.1007/s12011-018-1575-8

Xiao, F., Ao, D., Zhou, B., Spears, J. W., Lin, X., & Huang, Y. (2017). Effects of supplemental chromium propionate on serum lipids, carcass traits, and meat quality of heat-stressed broilers. Biological Trace Element Research, 176(2), 401–406. https://doi.org/10.1007/s12011-016-0852-7

Youssef, I. M. I., Abdo, I. M. I., Elsukkary, H. F. A., El-Kady, M. F., & Elsayed, M. (2022). Effects of dietary supplementation of chromium methionine chelate on growth performance, oxidative stress, hematological indices, and carcass traits of broiler chickens. Tropical Animal Health Production, 54(5), 267. https://doi.org/10.1007/s11250-022-03260-1

Zhang, Q., Zhang, H., Jiang, Y., Wang, J., Wu, D., Wu, C., Che, L., Lin, Y., Zhuo, Y., Luo, Z., Nie, K., & Li, J. (2024). Chromium propionate supplementation to energy- and protein-reduced diets reduces feed consumption but improves feed conversion ratio of yellow-feathered male broilers in the early period and improves meat quality. Poultry Science, 103(2), 103260. https://doi.org/10.1016/j.psj.2023.103260

Authors

G. L. S. Tesser
N. Rohloff Junior
T. S. Andrade
thiagoandradefoz@hotmail.com (Primary Contact)
C. Kaufmann
A. P. G. C. Costa
M. F. C. Pereira
A. A. Calderano
F. S. Dadólio
E. S. Klosowski
C. Eyng
R. V. Nunes
TesserG. L. S., Rohloff JuniorN., AndradeT. S., KaufmannC., CostaA. P. G. C., PereiraM. F. C., CalderanoA. A., DadólioF. S., KlosowskiE. S., EyngC., & NunesR. V. (2025). Improving Meat Quality and Reducing Breast of Myopathies in Broiler Chickens Subjected to Cyclic Heat Stress by Supplementing of Chromium-Methionine. Tropical Animal Science Journal, 48(1), 27-36. https://doi.org/10.5398/tasj.2025.48.1.27

Article Details