The Association of IGFBP7 Gene Polymorphism on Lamb Meat Quality in Javanese Thin-Tailed Sheep
Abstract
The insulin-like growth factor binding-protein 7 (IGFBP7) gene is one of the potential genes related to meat quality. The objective of the current study was to evaluate polymorphism of the IGFBP7 gene (g.72351183A>C) and its association with meat quality traits in the Javanese thin-tailed (JTT) sheep. A comprehensive analysis was conducted on 88 JTT male sheep to examine their fatty acid composition, carcass characteristics, carcass retail cuts, and the physical properties of lamb meat. The polymorphism was detected using the PCR-RFLP technique. The association between the IGFBP7 gene polymorphism and the observed variables of meat quality was evaluated using one-way analysis of variance (ANOVA). The study results indicated that the IGFBP7 gene was polymorphic in JTT sheep population, with the allele distribution conforming to Hardy-Weinberg equilibrium. The AA genotype was found to be predominant. The IGFBP7 gene variants were associated (p<0.05) with erucic acid, linoleic acid, eicosapentaenoic acid, and total polyunsaturated fatty acid (PUFA). Sheep possesing the CC genotype exhibited the highest levels of linoleic acid, eicosapentaenoic acid, and total PUFA in comparison to those with AA and AC genotypes. However, the IGFBP7 gene polymorphism was not associated with carcass characteristics, carcass retail cuts, and physical properties of meat. These findings suggest that the IGFBP7 gene is a promising candidate marker for improving fatty acid composition in JTT sheep.
References
Abdillah, G. K., K. Listyarini, R. S. Harahap, A. Gunawan, & C. Sumantri. 2021. Association of cytochrome P450 2A6 (CYP2A6) gene polymorphisms with fatty acid traits in Indonesian native sheep. Bulletin Animal Science 45:148–154. https://doi.org/10.21059/buletinpeternak.v45i3.65604
Aksoy, Y. & Z. Ulutaş. 2016. Meat production traits of local Karayaka sheep in Turkey 1. The meat quality characteristic of lambs. Ital. J. Food Sci. 28:131–138.
Aksoy, Y., Ü. Çiçek, U. Şen, E. Şirin, M. Uğurlu, A. Önenç, M. Kuran, & Z. Ulutaş. 2019. Meat production characteristics of Turkish native breeds: II. Meat quality, fatty acid, and cholesterol profile of lambs. Arch. Anim. Breed. 62:41–48. https://doi.org/10.5194/aab-62-41-2019
Álvarez, C., L. Morán, D. F. Keenan, A. M. Mullen, & G. Delgado-Pando. 2019. Mechanical and biochemical methods for rigor measurement: Relationship with eating quality. J. Food Qual. 2019:1–13. https://doi.org/10.1155/2019/1894543
Armstrong, E., G. Ciappesoni, W. Iriarte, C. Da Silva, F. Macedo, E. A. Navajas, G. Brito, R. San Julián, D. Gimeno, & A. Postiglioni. 2018. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep. Meat Sci. 145:202–208. https://doi.org/10.1016/j.meatsci.2018.06.014
Bautista-Díaz, E., J. A. Mezo-Solis, J. Herrera-Camacho, A. Cruz-Hernández, A. Gomez-Vazquez, L. O. Tedeschi, H. A. Lee-Rangel, E. Vargas-Bello-Pérez, & A. J. Chay-Canul. 2020. Prediction of carcass traits of hair sheep lambs using body measurements. Animals 10:1276. https://doi.org/10.3390/ani10081276
Bonny, S. P., R. A. O’Reilly, D. W. Pethick, G. E. Gardner, J. F. Hocquette, & L. Pannier. 2018. Update of meat standards Australia and the cuts based grading scheme for beef and sheepmeat. J. Integr. Agric. 17:1641–1654. https://doi.org/10.1016/S2095-3119(18)61924-0
Bowker, B. & H. Zhuang. 2015. Relationship between water-holding capacity and protein denaturation in broiler breast meat. Poult. Sci. 94:1657–1664. https://doi.org/10.3382/ps/pev120
BSN. 2018. SNI 99003-2018. Standar Nasional Indonesia, BSN, Jakarta, Indonesia.
Chaves Lima, T. B., R. M. F. Silveira, J. P. A. Do Rêgo, A. De A. A. N. Moura, C. H. Lobo, C. McManus, N. J. M. Batista, P. G. Pimentel, M. R. M. Das Neves, & A. V. Landim. 2024. Gene expression in the Longissimus dorsi muscle related to meat quality from tropical hair lambs. Trop. Anim. Health Prod. 56:213. https://doi.org/10.1007/s11250-024-03999-9
Cheng, S., X. Wang, Q. Zhang, Y. He, X. Zhang, L. Yang, & J. Shi. 2020. Comparative transcriptome analysis identifying the different molecular genetic markers related to production performance and meat quality in Longissimus dorsi tissues of MG × STH and STH sheep. Genes 11:183. https://doi.org/10.3390/genes11020183
Dagong, M. I. A., R. Herman, C. Sumantri, R. R. Noor, & M. Yamin. 2012. Carcass and physical meat characteristics of thin tail sheep (TTS) based on calpastatin gene (CAST) (Locus intron 5– exon 6) genotypes variation. Indonesian Journal Animal Veterinary Sciences 17:13-24.
Djuricic, I. & P. C. Calder. 2021. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 13:2421. https://doi.org/10.3390/nu13072421
Ekiz, B., A. Yilmaz, H. Yalcintan, A. Yakan, O. Kocak, & M. Ozcan. 2019. The effect of production system and finish weight on carcass and meat quality of Kivircik lambs. Annals. Anim. Sci. 19:517–538. https://doi.org/10.2478/aoas-2019-0010
Gallo, S. B., M. de B. Arrigoni, A. L. da S. C. Lemos, M. M. H. Haguiwara, & H. V. A. Bezerra. 2019. Influence of lamb finishing system on animal performance and meat quality. Acta Sci. 41:e44742. https://doi.org/10.4025/actascianimsci.v41i1.44742
Gebreselassie, G., H. Berihulay, L. Jiang, & Y. Ma. 2019. Review on genomic regions and candidate genes associated with economically important production and reproduction traits in sheep (Ovies aries). Animals 10:33. https://doi.org/10.3390/ani10010033
Geletu, U. S., M. A. Usmael, Y. Y. Mummed, & A. M. Ibrahim. 2021. Quality of cattle meat and its compositional constituents. Vet. Med. Int. e7340495. https://doi.org/10.1155/2021/7340495
Geng, W., Y. Guo, B. Chen, X. Cheng, S. Li, M. K. Challioui, W. Tian, H. Li, Y. Zhang, & Z. Li. 2024. IGFBP7 promotes the proliferation and differentiation of primary myoblasts and intramuscular preadipocytes in chicken. Poult. Sci. 103:104258. https://doi.org/10.1016/j.psj.2024.104258
Gonzales-Barron, U., T. Popova, R. B. Piedra, A. Tolsdorf, A. Geß, J. Pires, R. Domínguez, F. Chiesa, A. Brugiapaglia, I. Viola, L. M. Battaglini, M. Baratta, J. M. Lorenzo, & V. A. Cadavez. 2021. Fatty acid composition of lamb meat from Italian and German local breeds. Small Rumin. Res. 200:106384. https://doi.org/10.1016/j.smallrumres.2021.106384
Gunawan, A., D. Anggrela, K. Listyarini, M. A. Abuzahra, J. Jakaria, M. Yamin, I. Inounu, & C. Sumantri. 2018. Identification of single nucleotide polymorphism and pathway analysis of apolipoprotein A5 (APOA5) related to fatty acid traits in Indonesian sheep. Trop. Anim. Sci. J. 41:165–173. https://doi.org/10.5398/tasj.2018.41.3.165
Gunawan, A., F. W. Pramukti, K. Listyarini, M. A. Abuzahra, J. Jakaria, C. Sumantri, I. Inounu, & M. J. Uddin. 2019. Novel variant in the leptin receptor (LEPR) gene and its association with fat quality, odour and flavour in sheep. J. Indones. Trop. Anim. Agric. 44:1–9. https://doi.org/10.14710/jitaa.44.1.1-9
Gunawan, A., K. Listyarini, R. S. Harahap, Jakaria, K. Roosita, C. Sumantri, I. Inounu, S. H. Akter, M. A. Islam, & M. J. Uddin. 2021. Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep. PLoS One 16:e0260514. https://doi.org/10.1371/journal.pone.0260514
Gurgel, A. L. C., S. Dante G. dos, J. V. E. Neto, C. G. F. de Araújo, M. G. Costa, L. C. V. Ítavo, I. M. M. Araujo, C. M. de Costa, J. C. S. Santana, C. C. B. F. Ítavo, & P. B. Fernandes. 2021. Prediction of carcass traits of Santa Inês lambs finished in tropical pastures through biometric measurements. Animals 11:2329. https://doi.org/10.3390/ani11082329
Harahap, R. S., R. R. Noor, & A. Gunawan. 2021. The polymorphism and expression of CYP2E1 gene and its relation to carcass and meat quality of Indonesian lamb. Trop. Anim. Sci. J. 44:377–385. https://doi.org/10.5398/tasj.2021.44.4.377
Harahap, R. S., R. R. Noor, Y. C. Endrawati, H. S. Darusman, & A. Gunawan. 2023. Novel polymorphisms of dopa decarboxylase gene and their association with lamb quality traits in Indonesian sheep. Anim. Biosci. 36:840–850. https://doi.org/10.5713/ab.22.0227
Hartl, D. L. & A. G. Clark. 1997. Principle of Population Genetic. Sinauer Associates, Sunderland, UK.
Henchion, M., M. McCarthy, V. C. Resconi, & D. Troy. 2014. Meat consumption: Trends and quality matters. Meat Sci. 98:561–568. https://doi.org/10.1016/j.meatsci.2014.06.007
Hongfang, G., R. Khan, S. H. A. Raza, K. Nurgulsim, S. M. Suhail, A. Rahman, I. Ahmed, A. Ijaz, I. Ahmad, & Z. Linsen. 2022. Transcriptional regulation of adipogenic marker genes for the improvement of intramuscular fat in Qinchuan beef cattle. Anim Biotechnol. 33:776–795. https://doi.org/10.1080/10495398.2020.1837847
Hu, Z., J. Wu, L. Qin, H. Jin, Y. Cao, & Y. Zhao. 2021. IGFBP7 downregulation or overexpression effect on bovine preadipocyte differentiation. Anim. Biotechnol. 32:21–30. https://doi.org/10.1080/10495398.2019.1642906
Huff-Lonergan, E. & S. M. Lonergan. 2005. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 71:194–204. https://doi.org/10.1016/j.meatsci.2005.04.022
Ibrahim, A., E. Baliarti, I. G. S. Budisatria, W. T. Artama, R. Widayanti, D. Maharani, L. Tavares, & E. T. Margawati. 2023. Genetic diversity and relationship among Indonesian local sheep breeds on Java Island based on mitochondrial cytochrome b gene sequences. J. Genet. Eng. Biotechnol. 21:34. https://doi.org/10.1186/s43141-023-00491-z
Ijaz, M., X. Li, D. Zhang, Z. Hussain, C. Ren, Y. Bai, & X. Zhen. 2020. Association between meat color of DFD beef and other quality attributes. Meat Sci. 161:107954. https://doi.org/10.1016/j.meatsci.2019.107954
Juárez, M., S. Lam, B. M. Bohrer, M. E. R. Dugan, P. Vahmani, J. Aalhus, A. Juárez, O. López-Campos, N. Prieto, & J. Segura. 2021. Enhancing the nutritional value of red meat through genetic and feeding strategies. Foods 10:872. https://doi.org/10.3390/foods10040872
Kapoor, B., D. Kapoor, S. Gautam, R. Singh, & S. Bhardwaj. 2021. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr. Nutr. Rep. 10:232–242. https://doi.org/10.1007/s13668-021-00363-3
Kausar, T., E. Hanan, O. Ayob, B. Praween, & Z. Azad. 2019. A review on functional ingredients in red meat products. Bioinformation 15:358. https://doi.org/10.6026/97320630015358
Komarudin, K. Listyarini, C. Budiman, C. Sumantri, & A. Gunawan. 2024. Polymorphism of IGFBP7 gene (g.72351183 A>C) and its association with mineral content and cholesterol of Indonesian lamb meat. BIO Web Conf. 88:00038. https://doi.org/10.1051/bioconf/20248800038
Kostecká, Z. & J. Blahovec. 2002. Animal insulin-like growth factor binding proteins and their biological functions. Vet. Med. 47:75–84. https://doi.org/10.17221/5807-VETMED
Latimer, G. W. 2012. Official Methods of Analysis of AOAC International. 19th Ed. AOAC International, Gaithersburg MD, USA.
Li, J., C. Tang, Y. Yang, Y. Hu, Q. Zhao, Q. Ma, X. Yue, F. Li, & J. Zhang. 2023. Characterization of meat quality traits, fatty acids and volatile compounds in Hu and Tan sheep. Front. Nutr. 10:1072159. https://doi.org/10.3389/fnut.2023.1072159
Listyarini, K., C. Sumantri, S. Rahayu, M. A. Islam, S. H. Akter, M. J. Uddin, & A. Gunawan. 2023. Hepatic transcriptome analysis reveals genes, polymorphisms, and molecules related to lamb tenderness. Animals 13:674. https://doi.org/10.3390/ani13040674
Liu, S., J. Huang, X. Wang, & Y. Ma. 2020. Transcription factors regulate adipocyte differentiation in beef cattle. Anim. Genet. 51:351–357. https://doi.org/10.1111/age.12931
Marangoni, F., C. Agostoni, C. Borghi, A. L. Catapano, H. Cena, A. Ghiselli, C. La Vecchia, G. Lercker, E. Manzato, A. Pirillo, G. Riccardi, P. Risé, F. Visioli, & A. Poli. 2020. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 292:90–98. https://doi.org/10.1016/j.atherosclerosis.2019.11.018
McNeill, S. H. 2014. Inclusion of red meat in healthful dietary patterns. Meat Sci. 98:452–460. https://doi.org/10.1016/j.meatsci.2014.06.028
Meira, A. N., G. C. M. Moreira, L. L. Coutinho, G. B. Mourão, H. C. Azevedo, E. N. Muniz, A. L. Machado, L. P. S. Junior, V. B. Pedrosa, & L. F. B. Pinto. 2018. Carcass and commercial cut yield of Santa Inês sheep affected by polymorphisms of the LEP gene. Small Rumin. Res. 166:121–128. https://doi.org/10.1016/j.smallrumres.2018.06.012
Mortensen, E. G., H. F. Fuerniss, J. F. Legako, L. D. Thompson, & D. R. Woerner. 2024. Nutrient analysis of raw and cooked USDA prime beef cuts. Nutrients 16:2912. https://doi.org/10.3390/nu16172912
Mortimer, S. I., J. H. J. Van Der Werf, R. H. Jacob, D. L. Hopkins, L. Pannier, K. L. Pearce, G. E. Gardner, R. D. Warner, G. H. Geesink, J. E. Hocking Edwards, E. Ponnampalam, A. J. Ball, A. R. Gilmour, & D. W. Pethick. 2014. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci. 96:1016–1024. https://doi.org/10.1016/j.meatsci.2013.09.007
Mwangi, F. W., E. Charmley, C. P. Gardiner, B. S. Malau-Aduli, R. T. Kinobe, & A. E. O. Malau-Aduli. 2019. Diet and genetics influence beef cattle performance and meat quality characteristics. Foods 8:648. https://doi.org/10.3390/foods8120648
Nei, M. & S. Kumar. 2000. Moleculear Evolution and Phylogenetics. Oxford University Press, NY., USA. https://doi.org/10.1093/oso/9780195135848.001.0001
Nyam, Y. S., N. Matthews, & Y. T. Bahta. 2020. Improving livelihoods of smallholder farmers through region specific strategies: a case study of South African sheep production. Agrekon 59:1–15. https://doi.org/10.1080/03031853.2019.1639205
Ooi, E. M. M., G. F. Watts, T. W. K. Ng, & P. H. R. Barrett. 2015. Effect of dietary fatty acids on human lipoprotein metabolism: A comprehensive update. Nutrients 7:4416–4425. https://doi.org/10.3390/nu7064416
Parlasca, M. C. & M. Qaim. 2022. Meat consumption and sustainability. Annu. Rev. Resour. Economics. 14:17–41. https://doi.org/10.1146/annurev-resource-111820-032340
Purslow, P. P., S. Oiseth, J. Hughes, & R. D. Warner. 2016. The structural basis of cooking loss in beef: Variations with temperature and ageing. Food Res. Int. 89:739–748. https://doi.org/10.1016/j.foodres.2016.09.010
Poznyakosvkiy, V. M., I. F. Gorlov, S. L Tikhonov, & V. G. Shelepov. 2015. About the quality of meat with PSE and DFD properties. Food Raw Materials 3:104-110. https://doi.org/10.12737/11244
Prache, S., N. Schreurs, & L. Guillier. 2022. Review: Factors affecting sheep carcass and meat quality attributes. Animal 16:100330. https://doi.org/10.1016/j.animal.2021.100330
Purbowati, E., C. M. S. Lestari, R. Adiwinarti, V. Restitrisnani, S. Mawati, A. Purnomoadi, & E. Rianto. 2021. Productivity and carcass characteristics of lambs fed fibrous agricultural wastes to substitute grass. Vet. World 14:1559–1563. https://doi.org/10.14202/vetworld.2021.1559-1563
Setyaningrum, A., S. Soeparno, L. M. Yusiati, & K. Koestantinah. 2015. Performance and meat quality of thin tailed sheep in supplementary feeding Lemuru fish oil protected by saponification with different NaOH concentration. Anim. Prod. 17:177–185. https://doi.org/10.20884/1.jap.2015.17.3.517
Suliman, G. M., A. N. Al-Owaimer, A. M. El-Waziry, E. O. S. Hussein, K. Abuelfatah, & A. A. Swelum. 2021. A comparative study of sheep breeds: Fattening performance, carcass characteristics, meat chemical composition and quality attributes. Front. Vet. Sci. 8:647192. https://doi.org/10.3389/fvets.2021.647192
Talebi, R., M. R. Ghaffari, M. Zeinalabedini, R. Abdoli, & M. Mardi. 2022. Genetic basis of muscle‐related traits in sheep: A review. Anim. Genet. 53:723–739. https://doi.org/10.1111/age.13266
Thu, D. T. N. 2006. Meat quality: Understanding of meat tenderness and influence of fat content on meat flavor. Sci. Technol. Dev. J. 9:65–70.
Tiesnamurti, B., S. E. Sinulingga, & R. M. Gatenby. 2020. Small ruminant community breeding program in Indonesia. Wartazoa 30:163. https://doi.org/10.14334/wartazoa.v30i3.1935
Van Dael, P. 2021. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: review of recent studies and recommendations. Nutr. Res. Pract. 15:137–159. https://doi.org/10.4162/nrp.2021.15.2.137
Vaskoska, R., M. Ha, Z. B. Naqvi, J. White, & R. D. Warner. 2020. Muscle, ageing and temperature influence the changes in texture, cooking loss and shrinkage of cooked beef. Foods 9:1–19. https://doi.org/10.3390/foods9091289
Wang, B., Z. Wang, Y. Chen, X. Liu, K. Liu, Y. Zhang, & H. Luo. 2021. Carcass traits, meat quality, and volatile compounds of lamb meat from different restricted grazing time and indoor supplementary feeding systems. Foods 10:2822. https://doi.org/10.3390/foods10112822
Xu, X., W. Chen, S. Yu, S. Fan, & W. Ma. 2020. Candidate genes expression affect intramuscular fat content and fatty acid composition in Tan sheep. Genet. Mol. Res. 19:1–18. https://doi.org/10.4238/gmr18550
Zhang, W., B. M. Naveena, C. Jo, R. Sakata, G. Zhou, R. Banerjee, & T. Nishiumi. 2017. Technological demands of meat processing–An Asian perspective. Meat Sci. 132:35–44. https://doi.org/10.1016/j.meatsci.2017.05.008
Authors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.