Antimicrobial Resistance of Escherichia coli Isolated from Ground Beef in Huasca de Ocampo, Hidalgo, Mexico
Abstract
The various pathotypes of Escherichia coli cause gastrointestinal infections and diarrhea in humans. Cattle have been reported as reservoirs of different strains of pathogenic E. coli, where the origin of animal-human transmission is usually based on the food chain. Therefore, the study of different food matrices plays an important role, especially in foods of high demand and consumption worldwide, such as beef and beef products. The present study determined the antimicrobial resistance profile of E. coli in ground beef marketed in the municipality of Huasca de Ocampo, Hidalgo, Mexico. In the present study, 10 ground beef samples were collected. The isolated strains were identified by traditional means and molecular by the 16S rRNA gene, the antibiotic sensitivity profile was identified by the Kirby-Bauer method and genotypic identification was performed for the type 1 integrase gene. All strains showed multidrug resistance to different classes of antimicrobials, and the resistance profile yielded a MAR index of 0.64. Of the 13 isolates, 6 (45.15%) were amplified in the presence of the type 1 integrase gene. This cross-sectional study showed a high prevalence of multidrug resistant E. coli recovered from ground beef. In addition, the bacterial resistance profile showed that all the isolated strains were resistant to antibiotics of the β-lactam family, while some antibiotics, such as fluoroquinolones, are highly sensitive drugs for the treatment of possible E. coli infections in the area studied.
References
Abayneh, M., Tesfaw, G., Woldemichael, K., Yohannis, M., & Abdissa, A. (2019). Assessment of extended-spectrum β-lactamase (ESBLs) - producing Escherichia coli from minced meat of cattle and swab samples and hygienic status of meat retailer shops in Jimma town, Southwest Ethiopia. BMC Infectious Diseases, 19(1), 897. https://doi.org/10.1186/s12879-019-4554-6
Adzitey, F., Assoah-Peprah, P., Teye, G. A., Somboro, A. M., Kumalo, H. M., & Amoako, D. G. (2020). Prevalence and antimicrobial resistance of Escherichia coli isolated from various meat types in the tamale metropolis of Ghana. International Journal of Food Science, 2020, 8877196. https://doi.org/10.1155/2020/8877196
Alonso, C. A., Cortés-Cortés, G., Maamar, E., Massó, M., Rocha-Gracia, R. D. C., Torres, C., Centrón, D., & Quiroga. M. D. (2018). Molecular diversity and conjugal transferability of class 2 integrons among Escherichia coli isolates from food, animal and human sources. International Journal of Antimicrobial Agents, 51(6), 905–911. https://doi.org/10.1016/j.ijantimicag.2018.02.001
An, X. L., Chen, Q. L., Zhu, D., Zhu, Y. G., Gillings, M. R., & Su, J. Q. (2018). Impact of wastewater treatment on the prevalence of integrons and the genetic diversity of integron gene cassettes. Applied and Environmental Microbiology, 84(9), e02766-17. https://doi.org/10.1128/AEM.02766-17
Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. 399(10325), pp. 629–655. Lancet (London, England).
Beyi, A. F., Fite, A. T., Tora, E., Tafese, A., Genu, T., Kaba, T., Beyene, T. J., Beyene, T., Korsa, M. G., Tadesse, F., De Zutter, L., Goddeeris, B. M., & Cox, E. (2017). Prevalence and antimicrobial susceptibility of Escherichia coli O157 in beef at butcher shops and restaurants in central Ethiopia. BMC Microbiology, 17(1), 49. https://doi.org/10.1186/s12866-017-0964-z
Bhoomika, Shakya, S., Patyal, A., & Gade, N. E. (2016). Occurrence and characteristics of extended-spectrum β-lactamases producing Escherichia coli in foods of animal origin and human clinical samples in Chhattisgarh, India. Veterinary World, 9(9), 996–1000. https://doi.org/10.14202/vetworld.2016.996-1000
Blount, Z. D. (2015). The unexhausted potential of E. coli. eLife, 4, e05826. https://doi.org/10.7554/eLife.05826
Caruso, G., Giammanco, A., Cardamone, C., Oliveri, G., Mascarella, C., Capra, G., & Fasciana, T. (2018). Extra-intestinal fluoroquinolone-resistant Escherichia coli strains isolated from meat. BioMed Research International, 2018, 8714975. https://doi.org/10.1155/2018/8714975
Castro, V. S., Teixeira, L. A. C., Rodrigues, D. D. P., dos Santos, L. F., Conte-Junior, C. A., & Figueiredo, E. E. S. (2019). Occurrence and antimicrobial resistance of E. coli non-O157 isolated from beef in Mato Grosso, Brazil. Tropical Animal Health Production, 51(5), 1117–1123. https://doi.org/10.1007/s11250-018-01792-z
Chen, C. M., Ke, S. C., Li, C. R., Wu, Y. C., Chen, T. H., Lai, C. H., Wu, X. X., & Wu, L. T. (2017). High diversity of antimicrobial resistance genes, class 1 integrons, and genotypes of multidrug-resistant Escherichia coli in beef carcasses. Microbial Drug Resistance, 23(7), 915–924. https://doi.org/10.1089/mdr.2016.0223
Crecencio, R. B., Brisola, M. C., Bitner, D., Frigo, A., Rampazzo, L., Borges, K. A., Furian, T. Q., Salle, C. T. P., Moraes, H. L. S., Faria, G. A., Da Silva, A. S., & Stefani, L. M. (2020). Antimicrobial susceptibility, biofilm formation and genetic profiles of Escherichia coli isolated from retail chicken meat. Infection, Genetics and Evolution, 84, 104355. https://doi.org/10.1016/j.meegid.2020.104355
Darphorn, T. S., Bel, K., Koenders-van Sint Anneland, B. B., Brul, S., & Ter Kuile, B. H. (2021). Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat. Scientific Reports, 11(1), 2136. https://doi.org/10.1038/s41598-021-81683-w
Davis, G. S., Waits, K., Nordstrom, L., Grande, H., Weaver, B., Papp, K., Horwinski, J., Koch, B., Hungate, B. A., Liu, C. M., & Price, L. B. (2018). Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiology, 18(1), 174. https://doi.org/10.1186/s12866-018-1322-5
Del Rio-Avila, C., Rosario, C., Arroyo-Escalante, S., Carrillo-Casas, E. M., Díaz-Aparicio, E., Suarez-Güemes, F., Silva-Sanchez, J., Xicohtencatl-Cortes, J., Maravilla, P., & Hernández-Castro, R. (2016). Characterisation of quinolone-resistant Escherichia coli of 1997 and 2005 isolates from poultry in Mexico. British Poultry Science, 57(4), 494–500. https://doi.org/10.1080/00071668.2016.1187716
Ejikeugwu, C., Nworie, O., Saki, M., Al-Dahmoshi, H. O. M., Al-Khafaji, N. S. K., Ezeador, C., Nwakaeze, E., Eze, P., Oni, E., Obi, C., Iroha, I., Esimone, C., & Adikwu, M. U. (2021). Metallo-β-lactamase and AmpC genes in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates from abattoir and poultry origin in Nigeria. BMC Microbiology, 21(1), 124. https://doi.org/10.1186/s12866-021-02179-1
El-Demerdash, A. S., Aggour, M. G., El-Azzouny, M. M., & Abou-Khadra, S. H. (2018). Molecular analysis of integron gene cassette arrays associated multi-drug resistant Enterobacteriaceae isolates from poultry. Cellular Molecular, 64(5), 149–156. https://doi.org/10.14715/cmb/2018.64.5.25
FAO. (2023). World food and agriculture – statistical yearbook 2023. FAO. https://doi.org/10.4060/cc8166en
Fuentes A. R., Talavera R. M., Vázquez N. J., Soriano V. E., & Gutiérrez C. A. (2013). Presencia de integrones clase I en Escherichia coli aislada de productos cárnicos en plantas Tipo Inspección Federal (TIF) en el Estado de México. Veterinaria México, 44(1), 23-30.
Galvis S., Fabian, & Moreno R., Laura. (2019). Molecular characterization and detection of genes blaCTX-M groups 1 and 9 in Klebsiella pneumoniae resistant to ceftazidime, in a hospital in San José de Cúcuta, Colombia. Revista Chilena de Infectologia, 36(3), 304–311. https://doi.org/10.4067/S0716-10182019000300304
Ghodousi, A., Bonura, C., Di Noto, A. M., & Mammina, C. (2015). Extended-spectrum ß-lactamase, AmpC-Producing, and fluoroquinolone-resistant Escherichia coli in retail broiler chicken meat, Italy. Foodborne Pathogens and Disease, 12(7), 619–625. https://doi.org/10.1089/fpd.2015.1936
González-Gutiérrez, M., García-Fernández, C., Alonso-Calleja, C., & Capita, R. (2019). Microbial load and antibiotic resistance in raw beef preparations from northwest Spain. Food Science & Nutrition, 8(2), 777–785. https://doi.org/10.1002/fsn3.1319
Hadžić-Hasanović, V., Jerković-Mujkić, A., Hasanović, E., Bačić, A., & Hukić, M. (2020). Phenotypic and genotypic detection of ESBL-producing E. coli isolates from chicken skin in Bosnia and Herzegovina. Medicinski Glasnik, 17(2), 308–315. https://doi.org/10.17392/1206-20
Hamed, O. M., Sabry, M. A., Hassanain, N. A., Hamza, E., Hegazi, A. G., & Salman, M. B. (2017). Occurrence of virulent and antibiotic-resistant Shiga toxin-producing Escherichia coli in some food products and human stool in Egypt. Veterinary World, 10(10), 1233–1240. https://doi.org/10.14202/vetworld.2017.1233-1240
Henriques, I. S., Fonseca, F., Alves, A., Saavedra, M. J., & Correia, A. (2006). Occurrence and diversity of integrons and beta-lactamase genes among ampicillin-resistant isolates from estuarine waters. Research in Microbiology, 157(10), 938–947. https://doi.org/10.1016/j.resmic.2006.09.003
Hossain, M. M. K., Islam, M. S., Uddin, M. S., Rahman, A. T. M. M., Ud-Daula, A., Islam, M. A., Rubaya, R., Bhuiya, A. A., Alim, M. A., Jahan, N., Li, J., & Alam, J. (2022). Isolation, identification and genetic characterization of antibiotic resistant Escherichia coli from frozen chicken meat obtained from supermarkets at Dhaka city in Bangladesh. Antibiotics, 12(1), 41. https://doi.org/10.3390/antibiotics12010041
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, Retrieved February, 19, 2024, from https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro
Jaja, I. F., Oguttu, J., Jaja, C. I., & Green, E. (2020). Prevalence and distribution of antimicrobial resistance determinants of Escherichia coli isolates obtained from meat in South Africa. PLoS ONE, 15(5), e0216914. https://doi.org/10.1371/journal.pone.0216914
Jamil, A., Zahoor, M. A., Nawaz, Z., Siddique, A. B., & Khurshid, M. (2022). Genetic diversity of Escherichia coli coharboring mcr-1 and extended spectrum beta-lactamases from poultry. BioMed Research International, 2022(1), 8224883. https://doi.org/10.1155/2022/8224883
Kaesbohrer, A., Bakran-Lebl, K., Irrgang, A., Fischer, J., Kämpf, P., Schiffmann, A., Werckenthin, C., Busch, M., Kreienbrock, L., & Hille, K. (2019). Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Veterinary Microbiology, 233, 52–60. https://doi.org/10.1016/j.vetmic.2019.03.025
Kassem, I. I., Nasser, N. A., & Salibi, J. (2020). Prevalence and loads of fecal pollution indicators and the antibiotic resistance phenotypes of Escherichia coli in raw minced beef in Lebanon. Foods, 9(11), 1543. https://doi.org/10.3390/foods9111543
Kaushik, M., Kumar, S., Kapoor, R. K., Virdi, J. S., & Gulati, P. (2018). Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. International Journal of Antimicrobial Agents, 51(2), 167–176. https://doi.org/10.1016/j.ijantimicag.2017.10.004
Kim, Y. J., Moon, J. S., Oh, D. H., Chon, J. W., Song, B. R., Lim, J. S., Heo, E. J., Park, H. J., Wee, S. H., & Sung, K. (2018). Genotypic characterization of ESBL-producing E. coli from imported meat in South Korea. Food Research International, 107, 158–164. https://doi.org/10.1016/j.foodres.2017.12.023
Liu, Z., Zhang, Z., Yan, H., Li, J., & Shi, L. (2015). Isolation and molecular characterization of multidrug-resistant Enterobacteriaceae strains from pork and environmental samples in Xiamen, China. Journal of Food Protection, 78(1), 78–88. https://doi.org/10.4315/0362-028X.JFP-14-172
Llorente, P., Barnech, L., Irino, K., Rumi, M. V., & Bentancor, A. (2014). Characterization of Shiga toxin-producing Escherichia coli isolated from ground beef collected in different socioeconomic strata markets in Buenos Aires, Argentina. BioMed Research International, 2014(1), 795104. https://doi.org/10.1155/2014/795104
Martínez-Vázquez, A. V., Rivera-Sánchez, G., Lira-Méndez, K., Reyes-López, M. Á., & Bocanegra-García, V. (2018). Prevalence, antimicrobial resistance and virulence genes of Escherichia coli isolated from retail meat in Tamaulipas, Mexico. Journal of Global Antimicrobial Resistance, 14, 266–272. https://doi.org/10.1016/j.jgar.2018.02.016
Miranda-Estrada, L. I., Ruíz-Rosas, M., Molina-López, J., Parra-Rojas, I., González-Villalobos, E., & Castro-Alarcón, N. (2017). Relationship between virulence factors, resistance to antibiotics and phylogenetic groups of uropathogenic Escherichia coli in two locations in Mexico. Enfermedades Infecciosas y Microbiología Clínica, 35(7), 426–433. https://doi.org/10.1016/j.eimc.2016.02.021
Moawad, A. A., Hotzel, H., Awad, O., Tomaso, H., Neubauer, H., Hafez, H. M., & El-Adawy, H. (2017). Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathogens, 9, 57. https://doi.org/10.1186/s13099-017-0206-9
Nekouei, O., Checkley, S., Waldner, C., Smith, B. A., Invik, J., Carson, C., Avery, B., Sanchez, J., & Gow, S. (2018). Exposure to antimicrobial-resistant Escherichia coli through the consumption of ground beef in Western Canada. International Journal of Food Microbiology, 272, 41–48. https://doi.org/10.1016/j.ijfoodmicro.2018.02.022
Nobili, G., Franconieri, I., La Bella, G., Basanisi, M. G., & La Salandra, G. (2017). Prevalence of verocytotoxigenic Escherichia coli strains isolated from raw beef in southern Italy. International Journal of Food Microbiology, 257, 201–205. https://doi.org/10.1016/j.ijfoodmicro.2017.06.022
Obaidat, M. M. (2020). Prevalence and antimicrobial resistance of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in imported beef cattle in Jordan. Comparative Immunology, Microbiology and Infectious Diseases, 70, 101447. https://doi.org/10.1016/j.cimid.2020.101447
OECD. (2019). OECD territorial reviews: Hidalgo, Mexico, OECD Territorial Reviews, OECD Publishing. https://doi.org/10.1787/9789264310391-en
Petternel, C., Galler, H., Zarfel, G., Luxner, J., Haas, D., Grisold, A. J., Reinthaler, F. F., & Feierl, G. (2014). Isolation and characterization of multidrug-resistant bacteria from minced meat in Austria. Food Microbiology, 44, 41–46. https://doi.org/10.1016/j.fm.2014.04.013
Pungpian, C., Sinwat, N., Angkititrakul, S., Prathan, R., & Chuanchuen, R. (2021). Presence and transfer of antimicrobial resistance determinants in Escherichia coli in pigs, pork, and humans in Thailand and Lao PDR border provinces. Microbial Drug Resistance, 27(4), 571–584. https://doi.org/10.1089/mdr.2019.0438
Racewicz, P., Majewski, M., Biesiada, H., Nowaczewski, S., Wilczyński, J., Wystalska, D., Kubiak, M., Pszczoła, M., & Madeja, Z. E. (2022). Prevalence and characterisation of antimicrobial resistance genes and class 1 and 2 integrons in multiresistant Escherichia coli isolated from poultry production. Scientific Reports, 12, 6062. https://doi.org/10.1038/s41598-022-09996-y
Rebbah, N., Messai, Y., Châtre, P., Haenni, M., Madec, J. Y., & Bakour, R. (2018). Diversity of CTX-M extended-spectrum β-lactamases in Escherichia coli isolates from retail raw ground beef: first report of CTX-M-24 and CTX-M-32 in Algeria. Microbial Drug Resistance, 24(7), 896–908. https://doi.org/10.1089/mdr.2017.0171
Reyes-Rodríguez, N. E., Talavera-Rojas, M. Varela-Guerrero, J. A., Barba-León, J. Gutiérrez-Castillo, A. C., & Alonso-Fresán, U. (2013). Prevalence and antibiotic resistance of Escherichia coli O157:H7 isolated from bovine carcasses at slaughterhouses of the Central Mexican Plateau. Revista Mexicana Ciencias Pecuarias 4(2), 235-242. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11242013000200009&lng=es&tlng=
Ribeiro, J. J. C., Tamanini, R., Fritegoto, B. S., Marangon, O. A. Godoi, S. F., Fernndes S. F., Assis, A. N., & Beloti. V. (2016). Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semina Ciências Agrárias, 37(5), 3069-3078. https://doi.org/10.5433/1679-0359.2016v37n5p3069
Ruiz-Roldán, L., Martínez-Puchol, S., Gomes, C., Palma, N., Riveros, M., Ocampo, K., Durand, D., Ochoa, T. J., Ruiz, J., & Pons, M. J. (2018). Presence of multidrug resistant Enterobacteriaceae and Escherichia coli in meat purchased in traditional markets of Lima. Revista Peruana de Medicina Experimental y Salud Pública, 35(3), 425–432. https://doi.org/10.17843/rpmesp.2018.353.3737
Sadat, A., Ramadan, H., Elkady, M. A., Hammad, A. M., Soliman, M. M., Aboelenin, S. M., Al-Harthi, H. F., Abugomaa, A., Elbadawy, M., & Awad, A. (2022). Phylotypic profiling, distribution of pathogenicity island markers, and antimicrobial susceptibility of Escherichia coli isolated from retail chicken meat and humans. Antibiotics, 11(9), 1197. https://doi.org/10.3390/antibiotics11091197
Saida, H., Ytow, N., & Seki, H. (1998). Photometric application of the Gram stain method to characterize natural bacterial populations in aquatic environments. Applied and Environmental Microbiology, 64(2), 742–747. https://doi.org/10.1128/AEM.64.2.742-747.1998
SIAP. 2024. Monthly progress of livestock production. Retrieved February 15, 2024, from https://nube.siap.gob.mx/avance_pecuario/
Sunde, M., Simonsen, G. S., Slettemeås, J. S., Böckerman, I., & Norström, M. (2015). Integron, plasmid and host strain characteristics of Escherichia coli from humans and food included in the Norwegian antimicrobial resistance monitoring programs. PLoS ONE, 10(6), e0128797. https://doi.org/10.1371/journal.pone.0128797
Tarekegn, A. A., Mitiku, B. A., & Alemu, Y. F. (2023). Escherichia coli O157:H7 beef carcass contamination and its antibiotic resistance in Awi Zone, Northwest Ethiopia. Food Science & Nutrition, 11(10), 6140–6150. https://doi.org/10.1002/fsn3.3550
Tyson, G. H., Li, C., Hsu, C. H., Bodeis-Jones, S., & McDermott, P. F. (2019). Diverse fluoroquinolone resistance plasmids from retail meat E. coli in the United States. Frontiers Microbiology, 10, 2826. https://doi.org/10.3389/fmicb.2019.02826
Vega-Sánchez, V., Latif-Eugenín, F., Soriano-Vargas, E., Beaz-Hidalgo, R., Figueras, M. J., Aguilera-Arreola, M. G., & Castro-Escarpulli, G. (2014). Re-identification of Aeromonas isolates from rainbow trout and incidence of class 1 integron and β-lactamase genes. Veterinary Microbiology, 172(3-4), 528–533. https://doi.org/10.1016/j.vetmic.2014.06.012
Velázquez-García, M. A. & Bautista-Moedano, F. (2021). La historia social de Huasca de Ocampo y el programa pueblos mágicos. Journal of the Academy, 4, 141-162. https://doi.org/10.47058/joa4.8
Vikram, A., Miller, E., Arthur, T. M., Bosilevac, J. M., Wheeler, T. L., & Schmidt, J. W. (2018). Similar levels of antimicrobial resistance in U.S. Food service ground beef products with and without a “Raised without Antibiotics” claim. Journal of Food Protection, 81(12), 2007–2018. https://doi.org/10.4315/0362-028X.JFP-18-299
Wan, M. T. & Chou, C. C. (2015). Class 1 Integrons and the antiseptic resistance Gene (qacEΔ1) in municipal and swine slaughterhouse wastewater treatment plants and wastewater-associated methicillin-resistant Staphylococcus aureus. International Journal of Environmental Research and Public Health, 12(6), 6249–6260. https://doi.org/10.3390/ijerph120606249
Wang, W., Wang, L., Su, J., & Xu, Z. (2020). Antibiotic susceptibility, biofilm-forming ability, and incidence of class 1 integron of Salmonella spp., Escherichia coli, and Staphylococcus aureus isolated from various foods in a school canteen in China. Foodborne Pathogens and Disease, 17(4), 269-275. https://doi.org/10.1089/fpd.2019.2694
Weinstein, M. P., & Lewis, J. S. (2020). The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. Journal of Clinical Microbiology, 58(3), e01864-19. https://doi.org/10.1128/JCM.01864-19
Winiarczyk-Raźniak, A. & Raźniak, P. (2021). Are pueblos mágicos really magic? tourism development program in the context of the quality of life of town residents. Land, 10(12), 1342. https://doi.org/10.3390/land10121342
Yassin, A. K., Gong, J., Kelly, P., Lu, G., Guardabassi, L., Wei, L., Han, X., Qiu, H., Price, S., Cheng, D., & Wang, C. (2017). Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China. PLoS ONE, 12(9), e0185326. https://doi.org/10.1371/journal.pone.0185326
Zepeda-Velazquez, A. P., Gómez-De-Anda, F. R., Aguilar-Mendoza, L. F., Castrejón-Jiménez, N. S., Hernández-González, J. C., Varela-Guerrero, J. A., de-la-Rosa-Arana, J. L., Vega-Sánchez, V., & Reyes-Rodríguez, N. E. (2023). Bullfrogs (Lithobates catesbeianus) as a potential source of foodborne disease. Journal of Food Protection, 86(4), 100067. https://doi.org/10.1016/j.jfp.2023.100067
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.