Enhancing Heat Stress Resilience in Broiler Chickens Through the Use of Probiotics and Postbiotics: A Review
Abstract
The broiler industry is currently the most important and rapidly growing livestock sector worldwide. However, it faces critical environmental issues, especially heat stress (HS). HS adversely affects the bird’s physiological and behavioural status, welfare, and growth performance, leading to numerous economic losses. Nevertheless, a limited understanding remains of the deep physiological and cellular responses related to energy formation and gut health. Therefore, the purpose of this review is to gain a better understanding of how HS affects broilers and to explore the potential of probiotics and postbiotics in mitigating HS effects, with a primary focus on antioxidant capacity, heat shock proteins (HSPs), gut health, and growth performance in HS-exposed broilers. HS induces various physiological and cellular responses related to energy metabolism, antioxidant defense, gut health, and inflammation. Probiotics and postbiotics, whether in single or mixed strains (such as Saccharomyces cerevisiae, Bacillus subtilis, Lactobacillus acidophilus, L. plantarum, and Enterococcus faecalis, etc.), have been shown to increase antioxidant enzyme activity, down-regulate HSP70 mRNA expression, and improve gut health through the enhanced gut morphology, strengthened barrier integrity, reduced inflammation, and restored gut microbial balance. Consequently, these benefits can lead to the enhanced growth performance in heat-stressed broilers. This indicates that probiotics and postbiotics hold promise as alternative feed additives to antibiotics for alleviating the negative effects of HS in the future. However, probiotics, being living microorganisms, are more sensitive and require conditions for viability and colonization in the gastrointestinal tract. Therefore, for practical application, postbiotics may offer greater effectiveness due to their safety, longer shelf life, and ease of storage, handling, and transportation.
References
Abdel-Moneim, A. M. E., A. M. Shehata, R. E. Khidr, V. K. Paswan, N. S. Ibrahim, A. A. El-Ghoul, S. A. Aldhumri, S. A. Gabr, N. M. Mesalam, A. M. Elbaz, M. A. Elsayed, M. M. Wakwak, & T. A. Ebeid. 2021. Nutritional manipulation to combat heat stress in poultry – a comprehensive review. J. Therm. Biol. 98:102915. https://doi.org/10.1016/j.jtherbio.2021.102915
Abdelqader, A., M. Abuajamieh, F. Hayajneh, & A. R. Al-Fataftah. 2020. Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens. J. Therm. Biol. 92:102654. https://doi.org/10.1016/j.jtherbio.2020.102654
Adams, C. A. 2010. The probiotic paradox: Live and dead cells are biological response modifiers. Nutr. Res. Rev. 23:37–46. https://doi.org/10.1017/S0954422410000090
Ahmed, E., M. Abdelrahman, & K. Gahreeb. 2019. Effect of probiotic on growth performance, carcass traits, and clinical health parameters of broilers reared under heat stress in upper Egypt. SVU Int. J. Vet. Sci. 2:27–44. https://doi.org/10.21608/svu.2019.11221.1012
Akbarian, A., J. Michiels, J. Degroote, M. Majdeddin, A. Golian, & S. De Smet. 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 7:37. https://doi.org/10.1186/s40104-016-0097-5
Al-Fataftah, A. R. & A. Abdelqader. 2014. Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim. Feed. Sci. Technol. 198:279–285. https://doi.org/10.1016/j.anifeedsci.2014.10.012
Amerah, A. M., A. Quilesb, P. Medelc, J. Sánchezc, M. J. Lehtinend, & M. I. Gracia. 2013. Effect of pelleting temperature and probiotic supplementation on growth performance and immune function of broilers fed maize/soy-based diets. Anim. Feed. Sci. Technol. 180:55-63. https://doi.org/10.1016/j.anifeedsci.2013.01.002
Apalowo, O. O., D. A. Ekunseitan, & Y. O. Fasina. 2024. Impact of heat stress on broiler chicken production. Poultry 3:107–128. https://doi.org/10.3390/poultry3020010
Attia, Y. A., M. A. Al-Harthi, A. S. El-Shafey, Y. A. Rehab, & W. K. Kim. 2017. Enhancing tolerance of broiler chickens to heat stress by supplementation with Vitamin E, Vitamin C and/or probiotics. Annals Animal Science 17:1155–1169. https://doi.org/10.1515/aoas-2017-0012
Attia, Y. A., S. Basiouni, N. M. Abdulsalam, F. Bovera, A. A. Aboshok, A. A. Shehata, & H. M. Hafez. 2023. Alternative to antibiotic growth promoters: beneficial effects of Saccharomyces cerevisiae and/or Lactobacillus acidophilus supplementation on the growth performance and sustainability of broilers production. Front. Vet. Sci. 10:1–10. https://doi.org/10.3389/fvets.2023.1259426
Bacanli, M. & N. Başaran. 2019. Importance of antibiotic residues in animal food. Food Chemical Toxicology 125:462–466. https://doi.org/10.1016/j.fct.2019.01.033
Bai, K., Q. Huang, J. Zhang, J. He, L. Zhang, & T. Wang. 2017. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult. Sci. 96:74–82. https://doi.org/10.3382/ps/pew246
Bauer, M. A., K. Kainz, D. Carmona-Gutierrez, & F. Madeo. 2018. Microbial wars: competition in ecological niches and within the microbiome. Microb. Cell 5:215–219. https://doi.org/10.15698/mic2018.05.628
Bayraktar, B., E. Tekce, H. Kaya, A. B. Gürbüz, E. Dirican, S. Korkmaz, B. Atalay, & U. Ülker. 2021. Adipokine, gut and thyroid hormone responses to probiotic application in chukar partridges (Alectoris chukar) exposed to heat stress. Acta. Vet. Hung. 69:282-290. https://doi.org/10.1556/004.2021.00032
Belhadj-Slimen, I., T. Najar, A. Ghram, & M. Abdrrabba. 2016. Heat stress effects on livestock: Molecular, cellular and metabolic aspects- a review. J. Anim. Physiol. Anim. Nutr. 100:401–412. https://doi.org/10.1111/jpn.12379
Chang, H. M., T. C. Loh, H. L. Foo, & E. T. C. Lim. 2022. Lactiplantibacillus plantarum postbiotics: Alternative of antibiotic growth promoter to ameliorate gut health in broiler chickens. Front. Vet. Sci. 9:1–17. https://doi.org/10.3389/fvets.2022.883324
Chowdhury, V. S., S. Tomonaga, S. Nishimura, S. Tabata, & M. Furuse. 2012. Physiological and behavioral responses of young chicks to high ambient temperature. J. Poult. Sci. 49:212–218. https://doi.org/10.2141/jpsa.011071
Cramer, T. A., H. W. Kim, Y. Chao, W. Wang, H. W. Cheng, & Y. H. B. Kim. 2018. Effects of probiotic (Bacillus subtilis) supplementation on meat quality characteristics of breast muscle from broilers exposed to chronic heat stress. Poult. Sci. 97:3358–3368. https://doi.org/10.3382/ps/pey176
Crisol-Martínez, E., D. Stanley, M. S. Geier, R. J. Hughes, & R. J. Moore. 2017. Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: Linking gut microbiota and growth performance in chickens. Appl. Microbiol. Biotechnol. 101:4547–4559. https://doi.org/10.1007/s00253-017-8193-9
Danladi, Y., T. C. Loh, H. L. Foo, H. Akit, N. A. M. Tamrin, & A. M. Naeem. 2022. Impact of feeding postbiotics and paraprobiotics produced from Lactiplantibacillus plantarum on colon mucosa microbiota in broiler chickens. Front. Vet. Sci. 9:1–13. https://doi.org/10.3389/fvets.2022.859284
das D. Ribeiro, J. C., M. M. Drumond, P. Mancha-Agresti, J. P. F. Guimarães, D. C. Ferreira, M. I. A. Martins, P. M. Pedro, A. C. Carvalho, R. Pereira, V. Ribeiro Júnior, V. A. Vasco, & L. P. Naves. 2023. Diets supplemented with probiotics improve the performance of broilers exposed to heat stress from 15 days of age. Probiotics Antimicrob. Proteins 15:1327–1341. https://doi.org/10.1007/s12602-022-09989-3
Deng, W., X. F. Dong, J. M. Tong, & Q. Zhang. 2012. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult. Sci. 91:575–582. https://doi.org/10.3382/ps.2010-01293
El-Sabrout, K., M. R. T. Dantas, & J. B. F. Souza-Junior. 2023. Herbal and bee products as nutraceuticals for improving poultry health and production. Worlds Poult. Sci. J. 79:223–242. https://doi.org/10.1080/00439339.2021.1960238
Goel, A., C. M. Ncho, & Y. H. Choi. 2021. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 12:11. https://doi.org/10.1186/s40104-020-00523-5
Hartcher, K. M. & H. K. Lum. 2020. Genetic selection of broilers and welfare consequences: A review. Worlds Poult. Sci. J. 76:154–167. https://doi.org/10.1080/00439339.2019.1680025
Humam, A. M., T. C. Loh, H. L. Foo, W. I. Izuddin, E. A. Awad, Z. Idrus, A. A. Samsudin, & N. M. Mustapha. 2020. Dietary supplementation of postbiotics mitigates adverse impacts of heat stress on antioxidant, lipid peroxidation, physiological stress indicators, lipid profile and meat quality in broilers. Animals 10:982. https://doi.org/10.3390/ani10060982
Humam, A. M., T. C. Loh, H. L. Foo, W. I. Izuddin, I. Zulkifli, A. A. Samsudin, & N. M. Musphata. 2021. Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in heat-stressed broilers. Poult. Sci. 100:100908. https://doi.org/10.1016/j.psj.2020.12.011
Humam, A. M., T. C. Loh, H. L. Foo, A. A. Samsudin, N. M. Mustapha, I. Zulkifli, & I. W. Izuddin. 2019. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals 9:664. https://doi.org/10.3390/ani9090644
Iraqi, E., A. A. Hady, N. Elsayed, H. Khalil, A. El-Saadany, & K. El-Sabrout. 2024. Effect of thermal manipulation on embryonic development, hatching process, and chick quality under heat-stress conditions. Poult Sci. 103:103257. https://doi.org/10.1016/j.psj.2023.103257
Jahromi, M. F., Y. W. Altaher, & P. Shokryazdan. 2016. Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. Int. J. Biometeorol. 60:1099–1110. https://doi.org/10.1007/s00484-015-1103-x
Kalmar, I. D., D. Vanrompay, & G. P. J. Janssens. 2013. Broiler ascites syndrome: Collateral damage from efficient feed to meat conversion. Vet. J. 197:169–174. https://doi.org/10.1016/j.tvjl.2013.03.011
Karaca, B., M. Yilmaz, & U. K. Gursoy. 2022. Targeting Nrf2 with probiotics and postbiotics in the treatment of periodontitis. Biomolecules 12:729. https://doi.org/10.3390/biom12050729
Kers, J. G., F. C. Velkers, E. A. J. Fischer, G. D. A. Hermes, J. A. Stegeman, & H. Smidt. 2018. Host and environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol. 9:1–14. https://doi.org/10.3389/fmicb.2018.00235
Kleyn, F. J. & M. Ciacciariello. 2021. Future demands of the poultry industry: Will we meet our commitments sustainably in developed and developing economies?. Worlds Poult. Sci. J. 77:267–278. https://doi.org/10.1080/00439339.2021.1904314
Koch, F., U. Thom, E. Albrecht, R. Weikard, W. Nolte, B. Kuhla, & C. Kuehn. 2019. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. PNAS 116:10333-38. https://doi.org/10.1073/pnas.1820130116
Kpomasse, C. C., O. E. Oke, F. M. Houndonougbo, & K. Tona. 2021. Broiler production challenges in the tropics: A review. Vet. Med. Sci. 7:831–842. https://doi.org/10.1002/vms3.435
Krysiak, K., D. Konkol, & M. Korczyński. 2021. Review overview of the use of probiotics in poultry production. Animals 11:1620. https://doi.org/10.3390/ani11061620
Lara, L. J. & M. H. Rostagno. 2013. Impact of heat stress on poultry production. Animals 3:356–369. https://doi.org/10.3390/ani3020356
Leonarduzzi, G., B. Sottero, & G. Poli. 2010. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacology Therapeutics 128:336–374. https://doi.org/10.1016/j.pharmthera.2010.08.003
Li, Q., J. Ouyang, H. Zhou, & J. You. 2022. Effect of probiotic supplementation on the expression of tight junction proteins, innate immunity-associated genes, and microbiota composition of broilers subjected to cyclic heat stress. Anim. Sci. J. 93:e13719. https://doi.org/10.1111/asj.13719
Li, T., D. Teng, R. Mao, Y. Hao, X. Wang, & J. Wang. 2020a. A critical review of antibiotic resistance in probiotic bacteria. Food Res. Int. 136:109571. https://doi.org/10.1016/j.foodres.2020.109571
Li, Q., G. Wan, C. Peng, L. Xu, Y. Yu, L. Li, & G. Li. 2020b. Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress. Anim. Sci. J. 91:e13433. https://doi.org/10.1111/asj.13433
Liu, Q., Z. Yu, F. Tian, J. Zhao, H. Zhang, Q. Zhai, & W. Chen. 2020. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 19:23. https://doi.org/10.1186/s12934-020-1289-4
Liu, Y. L., K. N. Ding, X. L. Shen, H. X. Liu, Y. A. Zhang, Y. Q. Liu, & Y. M. He. 2022. Chronic heat stress promotes liver inflammation in broilers via enhancing NF‑κB and NLRP3 signaling pathway. BMC Vet. Res. 18:298. https://doi.org/10.1186/s12917-022-03388-0
Ma, F., S. Xu, Z. Tang, Z. Li, & L. Zhang. 2021. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety Health 3:32–38. https://doi.org/10.1016/j.bsheal.2020.09.004
Metzler-Zebeli, B. U., S. C. Siegerstetter, E. Magowan, P. G. Lawlor, R. M. Petri, N. E. O´Connell, & Q. Zebeli. 2019. Feed restriction modifies intestinal microbiota-host mucosal networking in chickens divergent in residual feed intake. mSystems 4:e00261. https://doi.org/10.1128/msystems.00261-18
Mujahid, A., Y. Akiba, & M. Toyomizu. 2007. Acute heat stress induces oxidative stress and decreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein. Poult. Sci. 86:364–371. https://doi.org/10.1093/ps/86.2.364
Mullur, R., Y. Y. Liu, & G. A. Brent. 2014. Thyroid hormone regulation of metabolism. Physiol. Rev. 94:355–382. https://doi.org/10.1152/physrev.00030.2013
Nawab, A., F. Ibtisham, G. Li, B. Kieser, J. Wu, W. Liu, Y. Zhao, Y. Nawab, K. Li, M. Xiao, & L. An. 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 78:131–139. https://doi.org/10.1016/j.jtherbio.2018.08.010
Oluwagbenga, E. M. & G. S. Fraley. 2023. Heat stress and poultry production: a comprehensive review. Poult. Sci. 12:103141. https://doi.org/10.1016/j.psj.2023.103141
Piqué, N., M. Berlanga, & D. Miñana-Galbis. 2019. Health benefits of heat-killed (Tyndallized) probiotics: An overview. Int. J. Mol. Sci. 20:2534. https://doi.org/10.3390/ijms20102534
Rakngam, S., M. Sirisopapong, C. Pukkung, & S. Khempaka. 2022. The efficacy of dietary dead cell Lactobacillus ingluviei C37 on carcass characteristics, meat quality and gut health in broilers subjected to heat stress. King Mongkut’s Agr. J. 40:246–259.
Rakngam, S., M. Sirisopapong, S. Okrathok, & S. Khempaka. 2024. Effects of dietary inclusion of Lactobacillus ingluviei C37 postbiotic on growth performance and expression of genes associated with antioxidant enzyme activity, gut barrier integrity and inflammation in heat-stressed broilers. Khon Kaen Agr. J. 52:57–58.
Ranjan, A., R. Sinha, I. Devi, A. Rahim, & S. Tiwari. 2019. Effect of heat stress on poultry production and their managemental approaches. Int. J. Curr. Microbiol. Appl. Sci. 8:1548–1555. https://doi.org/10.20546/ijcmas.2019.802.181
Rezaie, N., S. Aghamohammad, E. H. A. A. Khiavi, S. Khatami, A. Sohrabi, & M. Rohani. 2024. The comparative anti-oxidant and anti-inflammatory efficacy of postbiotics and probiotics through Nrf-2 and NF-kB pathways in DSS-induced colitis model. Sci. Rep. 14:11560. https://doi.org/10.1038/s41598-024-62441-0
Rostagno, M. H. 2020. Effects of heat stress on the gut health of poultry. J. Anim. Sci. 98:skaa090. https://doi.org/10.1093/jas/skaa090
Roy, B. C., S. Das Chowdhury, & S. M. L. Kabir. 2015. Effects of feeding Bacillus subtilis to heat stressed broiler chickens with or without an antibiotic growth promoter. Asian J. Med. Biol. Res. 1:80–88. https://doi.org/10.3329/ajmbr.v1i1.25502
Saeed, M., Z. Afzal, F. Afzal, R. U. Khan, S. S. Elnesr, M. Alagawany, & H. Chen. 2023. Use of postbiotic as growth promoter in poultry industry: A review of current knowledge and future prospects. Food Sci. Anim. Resour. 43:1111–1127. https://doi.org/10.5851/kosfa.2023.e52
Salminen, S., M. C. Collado, A. Endo, C. Hill, S. Labeer, E. M. M. Quigley, M. E. Sanders, R. Shamir, J. R. Swann, H. Szajewska, & G. Vinderola. 2021. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepato. 18:649–677. https://doi.org/10.1038/s41575-021-00440-6
Shazali, N., H. L. Foo, T. C. Loh, D. W. Choe, & R. Abdul Rahim. 2014. Prevalence of antibiotic resistance in lactic acid bacteria isolated from the faeces of broiler chicken in Malaysia. Gut Pathog. 6:1. https://doi.org/10.1186/1757-4749-6-1
Shin, Y., S. Han, J. Kwon, S. Ju, T. G. Choi, I. Kang, & S. S. Kim. 2023. Roles of short-chain fatty acids in inflammatory bowel disease. Nutrients 15:4466. https://doi.org/10.3390/nu15204466
Sirisopapong, M., T. Shimosato, S. Okrathok, & S. Khempaka. 2023. Assessment of lactic acid bacteria isolated from the chicken digestive tract for potential use as poultry probiotics. Anim. Biosci. 36:1209-1220. https://doi.org/10.5713/ab.22.0455
Sumanu, V. O., C. Byaruhanga, A. M. Bosman, S. O. Ochai, V. Naidoo, M. C. Oosthuizen, & J. P. Chamunorwa. 2023a. Effects of probiotic (Saccharomyces cerevisiae) and ascorbic acid on oxidative gene damage biomarker, heat shock protein 70 and interleukin 10 in broiler chickens exposed to heat stress. Anim. Gene 28:200150. https://doi.org/10.1016/j.angen.2023.200150
Sumanu, V. O., V. Naidoo, M. Oosthuizen, J. P. Chamunorwa. 2023b. A technical report on the potential effects of heat stress on antioxidant enzymes activities, performance and small intestinal morphology in broiler chickens administered probiotic and ascorbic acid during the hot summer season. Animals 13:3407. https://doi.org/10.3390/ani13213407
Tang, H., W. Huang, & Y. F. Yao. 2023. The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. Microb. Cell. 10:49-62. https://doi.org/10.15698/mic2023.03.792
Tavárez, M. A. & F. S. Santos. 2016. Impact of genetics and breeding on broiler production performance: A look into the past, present, and future of the industry. Anim. Front. 6:37–41. https://doi.org/10.2527/af.2016-0042
Teyssier, J., G. Brugaletta, F. Sirri, S. Dridi, & S. J. Rochell. 2022a. A review of heat stress in chickens. Part II : Insights into protein and energy utilization and feeding. Front. Physiol. 13:943612. https://doi.org/10.3389/fphys.2022.943612
Teyssier, J. R., A. Preynat, P. Cozannet, M. Briens, A. Mauromoustakos, E. S. Greene, C. M. Owens, S. Dridi, & S. J. Rochell. 2022b. Constant and cyclic chronic heat stress models differentially influence growth performance, carcass traits and meat quality of broilers. Poult. Sci. 101:101963. https://doi.org/10.1016/j.psj.2022.101963
Thornton, P., G. Nelson, D. Mayberry, & M. Herrero. 2021. Increases in extreme heat stress in domesticated livestock species during the twenty-first century. Glob. Chang. Biol. 27:5762-5772. https://doi.org/10.1111/gcb.15825
Tsukagoshi, M., M. Sirisopapong, F. Namai, M. Ishida, S. Okrathok, S. Shigemori, T. Ogita, T. Sato, S. Khempaka, & T. Shimosato. 2020. Lactobacillus ingluviei C37 from chicken inhibits inflammation in LPS-stimulated mouse macrophages. Anim. Sci. J. 91:e13436. https://doi.org/10.1111/asj.13436
Vandana, G. D., V. Sejian, A. M. Lees, P. Pragna, M. V. Silpa, & S. K. Maloney. 2021. Heat stress and poultry production: Impact and amelioration. Int. J. Biometeorol. 65:163–179. https://doi.org/10.1007/s00484-020-02023-7
Wang, W. C., F. F. Yan, J. Y. Hu, O. A. Amen, & H. W. Cheng. 2018. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J. Anim. Sci. 96:1654–1666. https://doi.org/10.1093/jas/sky092
Wasti, S., N. Sah, & B. Mishra. 2020. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 10:1266. https://doi.org/10.3390/ani10081266
Xia, M., C. Li, D. Wu, F. Wu, L. Kong, Z. Jia, W. Han, S. Chen, W. Fang, Y. Liu, & B. Chen. 2024. Benefits of heat-killed Lactobacillus acidophilus on growth performance, nutrient digestibility, antioxidant status, immunity, and cecal microbiota of rabbits. Front. Vet. Sci. 11:1–15. https://doi.org/10.3389/fvets.2024.1361908
Yang, L., G. Y. Tan, Y. Q. Fu, J. H. Feng, & M. H. Zhang. 2019. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151:204–208. https://doi.org/10.1016/j.cbpc.2009.10.010
Zhang, C., X. H. Zhao, L. Yang, X. Y. Chen, R. S. Jiang, S. H. Jin, Z. Y. Geng. 2017. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 96:4325–4332. https://doi.org/10.3382/ps/pex266
Zhu, C., L. Gong, K. Huang, F. Li, D. Tong, & H. Zhang. 2020. Effect of heat-inactivated compound probiotics on growth performance, plasma biochemical indices, and cecal microbiome in Yellow-feathered broilers. Front. Microbiol. 11:585623. https://doi.org/10.3389/fmicb.2020.585623
Zmrhal, V., A. Svoradova, E. Venusova, & P. Slama. 2023. The influence of heat stress on chicken immune system and mitigation of negative impacts by baicalin and baicalein. Animals 13:2564. https://doi.org/10.3390/ani13162564
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.