Enhancing Heat Stress Resilience in Broiler Chickens Through the Use of Probiotics and Postbiotics: A Review

S. Rakngam, Y. Zhu, S. Okrathok, C. Pukkung, S. Khempaka

Abstract

The broiler industry is currently the most important and rapidly growing livestock sector worldwide. However, it faces critical environmental issues, especially heat stress (HS). HS adversely affects the bird’s physiological and behavioural status, welfare, and growth performance, leading to numerous economic losses. Nevertheless, a limited understanding remains of the deep physiological and cellular responses related to energy formation and gut health. Therefore, the purpose of this review is to gain a better understanding of how HS affects broilers and to explore the potential of probiotics and postbiotics in mitigating HS effects, with a primary focus on antioxidant capacity, heat shock proteins (HSPs), gut health, and growth performance in HS-exposed broilers. HS induces various physiological and cellular responses related to energy metabolism, antioxidant defense, gut health, and inflammation. Probiotics and postbiotics, whether in single or mixed strains (such as Saccharomyces cerevisiae, Bacillus subtilis, Lactobacillus acidophilus, L. plantarum, and Enterococcus faecalis, etc.), have been shown to increase antioxidant enzyme activity, down-regulate HSP70 mRNA expression, and improve gut health through the enhanced gut morphology, strengthened barrier integrity, reduced inflammation, and restored gut microbial balance. Consequently, these benefits can lead to the enhanced growth performance in heat-stressed broilers. This indicates that probiotics and postbiotics hold promise as alternative feed additives to antibiotics for alleviating the negative effects of HS in the future. However, probiotics, being living microorganisms, are more sensitive and require conditions for viability and colonization in the gastrointestinal tract. Therefore, for practical application, postbiotics may offer greater effectiveness due to their safety, longer shelf life, and ease of storage, handling, and transportation.

References

Abd El-Aziz, A. H., K. El-Sabrout, & M. A. Ghanima. 2024. Sodium butyrate supplementation for improving poultry and rabbit performance. Trop. Anim. Sci. J. 47:252–264. https://doi.org/10.5398/tasj.2024.47.2.252

Abdel-Moneim, A. M. E., A. M. Shehata, R. E. Khidr, V. K. Paswan, N. S. Ibrahim, A. A. El-Ghoul, S. A. Aldhumri, S. A. Gabr, N. M. Mesalam, A. M. Elbaz, M. A. Elsayed, M. M. Wakwak, & T. A. Ebeid. 2021. Nutritional manipulation to combat heat stress in poultry – a comprehensive review. J. Therm. Biol. 98:102915. https://doi.org/10.1016/j.jtherbio.2021.102915

Abdelqader, A., M. Abuajamieh, F. Hayajneh, & A. R. Al-Fataftah. 2020. Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens. J. Therm. Biol. 92:102654. https://doi.org/10.1016/j.jtherbio.2020.102654

Adams, C. A. 2010. The probiotic paradox: Live and dead cells are biological response modifiers. Nutr. Res. Rev. 23:37–46. https://doi.org/10.1017/S0954422410000090

Ahmed, E., M. Abdelrahman, & K. Gahreeb. 2019. Effect of probiotic on growth performance, carcass traits, and clinical health parameters of broilers reared under heat stress in upper Egypt. SVU Int. J. Vet. Sci. 2:27–44. https://doi.org/10.21608/svu.2019.11221.1012

Akbarian, A., J. Michiels, J. Degroote, M. Majdeddin, A. Golian, & S. De Smet. 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 7:37. https://doi.org/10.1186/s40104-016-0097-5

Al-Fataftah, A. R. & A. Abdelqader. 2014. Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim. Feed. Sci. Technol. 198:279–285. https://doi.org/10.1016/j.anifeedsci.2014.10.012

Amerah, A. M., A. Quilesb, P. Medelc, J. Sánchezc, M. J. Lehtinend, & M. I. Gracia. 2013. Effect of pelleting temperature and probiotic supplementation on growth performance and immune function of broilers fed maize/soy-based diets. Anim. Feed. Sci. Technol. 180:55-63. https://doi.org/10.1016/j.anifeedsci.2013.01.002

Apalowo, O. O., D. A. Ekunseitan, & Y. O. Fasina. 2024. Impact of heat stress on broiler chicken production. Poultry 3:107–128. https://doi.org/10.3390/poultry3020010

Attia, Y. A., M. A. Al-Harthi, A. S. El-Shafey, Y. A. Rehab, & W. K. Kim. 2017. Enhancing tolerance of broiler chickens to heat stress by supplementation with Vitamin E, Vitamin C and/or probiotics. Annals Animal Science 17:1155–1169. https://doi.org/10.1515/aoas-2017-0012

Attia, Y. A., S. Basiouni, N. M. Abdulsalam, F. Bovera, A. A. Aboshok, A. A. Shehata, & H. M. Hafez. 2023. Alternative to antibiotic growth promoters: beneficial effects of Saccharomyces cerevisiae and/or Lactobacillus acidophilus supplementation on the growth performance and sustainability of broilers production. Front. Vet. Sci. 10:1–10. https://doi.org/10.3389/fvets.2023.1259426

Bacanli, M. & N. Başaran. 2019. Importance of antibiotic residues in animal food. Food Chemical Toxicology 125:462–466. https://doi.org/10.1016/j.fct.2019.01.033

Bai, K., Q. Huang, J. Zhang, J. He, L. Zhang, & T. Wang. 2017. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult. Sci. 96:74–82. https://doi.org/10.3382/ps/pew246

Bauer, M. A., K. Kainz, D. Carmona-Gutierrez, & F. Madeo. 2018. Microbial wars: competition in ecological niches and within the microbiome. Microb. Cell 5:215–219. https://doi.org/10.15698/mic2018.05.628

Bayraktar, B., E. Tekce, H. Kaya, A. B. Gürbüz, E. Dirican, S. Korkmaz, B. Atalay, & U. Ülker. 2021. Adipokine, gut and thyroid hormone responses to probiotic application in chukar partridges (Alectoris chukar) exposed to heat stress. Acta. Vet. Hung. 69:282-290. https://doi.org/10.1556/004.2021.00032

Belhadj-Slimen, I., T. Najar, A. Ghram, & M. Abdrrabba. 2016. Heat stress effects on livestock: Molecular, cellular and metabolic aspects- a review. J. Anim. Physiol. Anim. Nutr. 100:401–412. https://doi.org/10.1111/jpn.12379

Chang, H. M., T. C. Loh, H. L. Foo, & E. T. C. Lim. 2022. Lactiplantibacillus plantarum postbiotics: Alternative of antibiotic growth promoter to ameliorate gut health in broiler chickens. Front. Vet. Sci. 9:1–17. https://doi.org/10.3389/fvets.2022.883324

Chowdhury, V. S., S. Tomonaga, S. Nishimura, S. Tabata, & M. Furuse. 2012. Physiological and behavioral responses of young chicks to high ambient temperature. J. Poult. Sci. 49:212–218. https://doi.org/10.2141/jpsa.011071

Cramer, T. A., H. W. Kim, Y. Chao, W. Wang, H. W. Cheng, & Y. H. B. Kim. 2018. Effects of probiotic (Bacillus subtilis) supplementation on meat quality characteristics of breast muscle from broilers exposed to chronic heat stress. Poult. Sci. 97:3358–3368. https://doi.org/10.3382/ps/pey176

Crisol-Martínez, E., D. Stanley, M. S. Geier, R. J. Hughes, & R. J. Moore. 2017. Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: Linking gut microbiota and growth performance in chickens. Appl. Microbiol. Biotechnol. 101:4547–4559. https://doi.org/10.1007/s00253-017-8193-9

Danladi, Y., T. C. Loh, H. L. Foo, H. Akit, N. A. M. Tamrin, & A. M. Naeem. 2022. Impact of feeding postbiotics and paraprobiotics produced from Lactiplantibacillus plantarum on colon mucosa microbiota in broiler chickens. Front. Vet. Sci. 9:1–13. https://doi.org/10.3389/fvets.2022.859284

das D. Ribeiro, J. C., M. M. Drumond, P. Mancha-Agresti, J. P. F. Guimarães, D. C. Ferreira, M. I. A. Martins, P. M. Pedro, A. C. Carvalho, R. Pereira, V. Ribeiro Júnior, V. A. Vasco, & L. P. Naves. 2023. Diets supplemented with probiotics improve the performance of broilers exposed to heat stress from 15 days of age. Probiotics Antimicrob. Proteins 15:1327–1341. https://doi.org/10.1007/s12602-022-09989-3

Deng, W., X. F. Dong, J. M. Tong, & Q. Zhang. 2012. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult. Sci. 91:575–582. https://doi.org/10.3382/ps.2010-01293

El-Sabrout, K., M. R. T. Dantas, & J. B. F. Souza-Junior. 2023. Herbal and bee products as nutraceuticals for improving poultry health and production. Worlds Poult. Sci. J. 79:223–242. https://doi.org/10.1080/00439339.2021.1960238

Goel, A., C. M. Ncho, & Y. H. Choi. 2021. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 12:11. https://doi.org/10.1186/s40104-020-00523-5

Hartcher, K. M. & H. K. Lum. 2020. Genetic selection of broilers and welfare consequences: A review. Worlds Poult. Sci. J. 76:154–167. https://doi.org/10.1080/00439339.2019.1680025

Humam, A. M., T. C. Loh, H. L. Foo, W. I. Izuddin, E. A. Awad, Z. Idrus, A. A. Samsudin, & N. M. Mustapha. 2020. Dietary supplementation of postbiotics mitigates adverse impacts of heat stress on antioxidant, lipid peroxidation, physiological stress indicators, lipid profile and meat quality in broilers. Animals 10:982. https://doi.org/10.3390/ani10060982

Humam, A. M., T. C. Loh, H. L. Foo, W. I. Izuddin, I. Zulkifli, A. A. Samsudin, & N. M. Musphata. 2021. Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in heat-stressed broilers. Poult. Sci. 100:100908. https://doi.org/10.1016/j.psj.2020.12.011

Humam, A. M., T. C. Loh, H. L. Foo, A. A. Samsudin, N. M. Mustapha, I. Zulkifli, & I. W. Izuddin. 2019. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals 9:664. https://doi.org/10.3390/ani9090644

Iraqi, E., A. A. Hady, N. Elsayed, H. Khalil, A. El-Saadany, & K. El-Sabrout. 2024. Effect of thermal manipulation on embryonic development, hatching process, and chick quality under heat-stress conditions. Poult Sci. 103:103257. https://doi.org/10.1016/j.psj.2023.103257

Jahromi, M. F., Y. W. Altaher, & P. Shokryazdan. 2016. Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. Int. J. Biometeorol. 60:1099–1110. https://doi.org/10.1007/s00484-015-1103-x

Kalmar, I. D., D. Vanrompay, & G. P. J. Janssens. 2013. Broiler ascites syndrome: Collateral damage from efficient feed to meat conversion. Vet. J. 197:169–174. https://doi.org/10.1016/j.tvjl.2013.03.011

Karaca, B., M. Yilmaz, & U. K. Gursoy. 2022. Targeting Nrf2 with probiotics and postbiotics in the treatment of periodontitis. Biomolecules 12:729. https://doi.org/10.3390/biom12050729

Kers, J. G., F. C. Velkers, E. A. J. Fischer, G. D. A. Hermes, J. A. Stegeman, & H. Smidt. 2018. Host and environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol. 9:1–14. https://doi.org/10.3389/fmicb.2018.00235

Kleyn, F. J. & M. Ciacciariello. 2021. Future demands of the poultry industry: Will we meet our commitments sustainably in developed and developing economies?. Worlds Poult. Sci. J. 77:267–278. https://doi.org/10.1080/00439339.2021.1904314

Koch, F., U. Thom, E. Albrecht, R. Weikard, W. Nolte, B. Kuhla, & C. Kuehn. 2019. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. PNAS 116:10333-38. https://doi.org/10.1073/pnas.1820130116

Kpomasse, C. C., O. E. Oke, F. M. Houndonougbo, & K. Tona. 2021. Broiler production challenges in the tropics: A review. Vet. Med. Sci. 7:831–842. https://doi.org/10.1002/vms3.435

Krysiak, K., D. Konkol, & M. Korczyński. 2021. Review overview of the use of probiotics in poultry production. Animals 11:1620. https://doi.org/10.3390/ani11061620

Lara, L. J. & M. H. Rostagno. 2013. Impact of heat stress on poultry production. Animals 3:356–369. https://doi.org/10.3390/ani3020356

Leonarduzzi, G., B. Sottero, & G. Poli. 2010. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacology Therapeutics 128:336–374. https://doi.org/10.1016/j.pharmthera.2010.08.003

Li, Q., J. Ouyang, H. Zhou, & J. You. 2022. Effect of probiotic supplementation on the expression of tight junction proteins, innate immunity-associated genes, and microbiota composition of broilers subjected to cyclic heat stress. Anim. Sci. J. 93:e13719. https://doi.org/10.1111/asj.13719

Li, T., D. Teng, R. Mao, Y. Hao, X. Wang, & J. Wang. 2020a. A critical review of antibiotic resistance in probiotic bacteria. Food Res. Int. 136:109571. https://doi.org/10.1016/j.foodres.2020.109571

Li, Q., G. Wan, C. Peng, L. Xu, Y. Yu, L. Li, & G. Li. 2020b. Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress. Anim. Sci. J. 91:e13433. https://doi.org/10.1111/asj.13433

Liu, Q., Z. Yu, F. Tian, J. Zhao, H. Zhang, Q. Zhai, & W. Chen. 2020. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 19:23. https://doi.org/10.1186/s12934-020-1289-4

Liu, Y. L., K. N. Ding, X. L. Shen, H. X. Liu, Y. A. Zhang, Y. Q. Liu, & Y. M. He. 2022. Chronic heat stress promotes liver inflammation in broilers via enhancing NF‑κB and NLRP3 signaling pathway. BMC Vet. Res. 18:298. https://doi.org/10.1186/s12917-022-03388-0

Ma, F., S. Xu, Z. Tang, Z. Li, & L. Zhang. 2021. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety Health 3:32–38. https://doi.org/10.1016/j.bsheal.2020.09.004

Metzler-Zebeli, B. U., S. C. Siegerstetter, E. Magowan, P. G. Lawlor, R. M. Petri, N. E. O´Connell, & Q. Zebeli. 2019. Feed restriction modifies intestinal microbiota-host mucosal networking in chickens divergent in residual feed intake. mSystems 4:e00261. https://doi.org/10.1128/msystems.00261-18

Mujahid, A., Y. Akiba, & M. Toyomizu. 2007. Acute heat stress induces oxidative stress and decreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein. Poult. Sci. 86:364–371. https://doi.org/10.1093/ps/86.2.364

Mullur, R., Y. Y. Liu, & G. A. Brent. 2014. Thyroid hormone regulation of metabolism. Physiol. Rev. 94:355–382. https://doi.org/10.1152/physrev.00030.2013

Nawab, A., F. Ibtisham, G. Li, B. Kieser, J. Wu, W. Liu, Y. Zhao, Y. Nawab, K. Li, M. Xiao, & L. An. 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 78:131–139. https://doi.org/10.1016/j.jtherbio.2018.08.010

Oluwagbenga, E. M. & G. S. Fraley. 2023. Heat stress and poultry production: a comprehensive review. Poult. Sci. 12:103141. https://doi.org/10.1016/j.psj.2023.103141

Piqué, N., M. Berlanga, & D. Miñana-Galbis. 2019. Health benefits of heat-killed (Tyndallized) probiotics: An overview. Int. J. Mol. Sci. 20:2534. https://doi.org/10.3390/ijms20102534

Rakngam, S., M. Sirisopapong, C. Pukkung, & S. Khempaka. 2022. The efficacy of dietary dead cell Lactobacillus ingluviei C37 on carcass characteristics, meat quality and gut health in broilers subjected to heat stress. King Mongkut’s Agr. J. 40:246–259.

Rakngam, S., M. Sirisopapong, S. Okrathok, & S. Khempaka. 2024. Effects of dietary inclusion of Lactobacillus ingluviei C37 postbiotic on growth performance and expression of genes associated with antioxidant enzyme activity, gut barrier integrity and inflammation in heat-stressed broilers. Khon Kaen Agr. J. 52:57–58.

Ranjan, A., R. Sinha, I. Devi, A. Rahim, & S. Tiwari. 2019. Effect of heat stress on poultry production and their managemental approaches. Int. J. Curr. Microbiol. Appl. Sci. 8:1548–1555. https://doi.org/10.20546/ijcmas.2019.802.181

Rezaie, N., S. Aghamohammad, E. H. A. A. Khiavi, S. Khatami, A. Sohrabi, & M. Rohani. 2024. The comparative anti-oxidant and anti-inflammatory efficacy of postbiotics and probiotics through Nrf-2 and NF-kB pathways in DSS-induced colitis model. Sci. Rep. 14:11560. https://doi.org/10.1038/s41598-024-62441-0

Rostagno, M. H. 2020. Effects of heat stress on the gut health of poultry. J. Anim. Sci. 98:skaa090. https://doi.org/10.1093/jas/skaa090

Roy, B. C., S. Das Chowdhury, & S. M. L. Kabir. 2015. Effects of feeding Bacillus subtilis to heat stressed broiler chickens with or without an antibiotic growth promoter. Asian J. Med. Biol. Res. 1:80–88. https://doi.org/10.3329/ajmbr.v1i1.25502

Saeed, M., Z. Afzal, F. Afzal, R. U. Khan, S. S. Elnesr, M. Alagawany, & H. Chen. 2023. Use of postbiotic as growth promoter in poultry industry: A review of current knowledge and future prospects. Food Sci. Anim. Resour. 43:1111–1127. https://doi.org/10.5851/kosfa.2023.e52

Salminen, S., M. C. Collado, A. Endo, C. Hill, S. Labeer, E. M. M. Quigley, M. E. Sanders, R. Shamir, J. R. Swann, H. Szajewska, & G. Vinderola. 2021. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepato. 18:649–677. https://doi.org/10.1038/s41575-021-00440-6

Shazali, N., H. L. Foo, T. C. Loh, D. W. Choe, & R. Abdul Rahim. 2014. Prevalence of antibiotic resistance in lactic acid bacteria isolated from the faeces of broiler chicken in Malaysia. Gut Pathog. 6:1. https://doi.org/10.1186/1757-4749-6-1

Shin, Y., S. Han, J. Kwon, S. Ju, T. G. Choi, I. Kang, & S. S. Kim. 2023. Roles of short-chain fatty acids in inflammatory bowel disease. Nutrients 15:4466. https://doi.org/10.3390/nu15204466

Sirisopapong, M., T. Shimosato, S. Okrathok, & S. Khempaka. 2023. Assessment of lactic acid bacteria isolated from the chicken digestive tract for potential use as poultry probiotics. Anim. Biosci. 36:1209-1220. https://doi.org/10.5713/ab.22.0455

Sumanu, V. O., C. Byaruhanga, A. M. Bosman, S. O. Ochai, V. Naidoo, M. C. Oosthuizen, & J. P. Chamunorwa. 2023a. Effects of probiotic (Saccharomyces cerevisiae) and ascorbic acid on oxidative gene damage biomarker, heat shock protein 70 and interleukin 10 in broiler chickens exposed to heat stress. Anim. Gene 28:200150. https://doi.org/10.1016/j.angen.2023.200150

Sumanu, V. O., V. Naidoo, M. Oosthuizen, J. P. Chamunorwa. 2023b. A technical report on the potential effects of heat stress on antioxidant enzymes activities, performance and small intestinal morphology in broiler chickens administered probiotic and ascorbic acid during the hot summer season. Animals 13:3407. https://doi.org/10.3390/ani13213407

Tang, H., W. Huang, & Y. F. Yao. 2023. The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. Microb. Cell. 10:49-62. https://doi.org/10.15698/mic2023.03.792

Tavárez, M. A. & F. S. Santos. 2016. Impact of genetics and breeding on broiler production performance: A look into the past, present, and future of the industry. Anim. Front. 6:37–41. https://doi.org/10.2527/af.2016-0042

Teyssier, J., G. Brugaletta, F. Sirri, S. Dridi, & S. J. Rochell. 2022a. A review of heat stress in chickens. Part II : Insights into protein and energy utilization and feeding. Front. Physiol. 13:943612. https://doi.org/10.3389/fphys.2022.943612

Teyssier, J. R., A. Preynat, P. Cozannet, M. Briens, A. Mauromoustakos, E. S. Greene, C. M. Owens, S. Dridi, & S. J. Rochell. 2022b. Constant and cyclic chronic heat stress models differentially influence growth performance, carcass traits and meat quality of broilers. Poult. Sci. 101:101963. https://doi.org/10.1016/j.psj.2022.101963

Thornton, P., G. Nelson, D. Mayberry, & M. Herrero. 2021. Increases in extreme heat stress in domesticated livestock species during the twenty-first century. Glob. Chang. Biol. 27:5762-5772. https://doi.org/10.1111/gcb.15825

Tsukagoshi, M., M. Sirisopapong, F. Namai, M. Ishida, S. Okrathok, S. Shigemori, T. Ogita, T. Sato, S. Khempaka, & T. Shimosato. 2020. Lactobacillus ingluviei C37 from chicken inhibits inflammation in LPS-stimulated mouse macrophages. Anim. Sci. J. 91:e13436. https://doi.org/10.1111/asj.13436

Vandana, G. D., V. Sejian, A. M. Lees, P. Pragna, M. V. Silpa, & S. K. Maloney. 2021. Heat stress and poultry production: Impact and amelioration. Int. J. Biometeorol. 65:163–179. https://doi.org/10.1007/s00484-020-02023-7

Wang, W. C., F. F. Yan, J. Y. Hu, O. A. Amen, & H. W. Cheng. 2018. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J. Anim. Sci. 96:1654–1666. https://doi.org/10.1093/jas/sky092

Wasti, S., N. Sah, & B. Mishra. 2020. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 10:1266. https://doi.org/10.3390/ani10081266

Xia, M., C. Li, D. Wu, F. Wu, L. Kong, Z. Jia, W. Han, S. Chen, W. Fang, Y. Liu, & B. Chen. 2024. Benefits of heat-killed Lactobacillus acidophilus on growth performance, nutrient digestibility, antioxidant status, immunity, and cecal microbiota of rabbits. Front. Vet. Sci. 11:1–15. https://doi.org/10.3389/fvets.2024.1361908

Yang, L., G. Y. Tan, Y. Q. Fu, J. H. Feng, & M. H. Zhang. 2019. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151:204–208. https://doi.org/10.1016/j.cbpc.2009.10.010

Zhang, C., X. H. Zhao, L. Yang, X. Y. Chen, R. S. Jiang, S. H. Jin, Z. Y. Geng. 2017. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 96:4325–4332. https://doi.org/10.3382/ps/pex266

Zhu, C., L. Gong, K. Huang, F. Li, D. Tong, & H. Zhang. 2020. Effect of heat-inactivated compound probiotics on growth performance, plasma biochemical indices, and cecal microbiome in Yellow-feathered broilers. Front. Microbiol. 11:585623. https://doi.org/10.3389/fmicb.2020.585623

Zmrhal, V., A. Svoradova, E. Venusova, & P. Slama. 2023. The influence of heat stress on chicken immune system and mitigation of negative impacts by baicalin and baicalein. Animals 13:2564. https://doi.org/10.3390/ani13162564

Authors

S. Rakngam
Y. Zhu
S. Okrathok
C. Pukkung
S. Khempaka
khampaka@sut.ac.th (Primary Contact)
RakngamS., ZhuY., OkrathokS., PukkungC., & KhempakaS. (2024). Enhancing Heat Stress Resilience in Broiler Chickens Through the Use of Probiotics and Postbiotics: A Review. Tropical Animal Science Journal, 47(4), 538-548. https://doi.org/10.5398/tasj.2024.47.4.538

Article Details