Enhancing Nutrient Intake, Digestibility, Rumen Fermentation, and Blood Metabolites in Kacang Goats Using Compost-Enriched Hydroponic Maize Fodder
Abstract
This study aimed to enhance nutrient intake, digestibility, rumen fermentation, and blood metabolites in Kacang goats by substituting grass silage with hydroponic maize fodder enriched with fermented compost tea. The compost tea, prepared by fermenting organic compost with sugared water + 40 mL EM4 for 3 days, was used to grow maize fodder hydroponically. Four male Kacang goats (13.05 ± 1.32 kg) were assigned to four dietary treatments in a 4x4 latin square design over four 15-day periods (10 days for adaption, 5 days for data collection). The treatments were: 60% grass silage + 10% Leucaena leucocephala + 30% concentrate (control, FCG0); 30% grass silage + 30% hydroponic maize fodder + 10% L. leucocephala + 30% concentrate (FCG1); 15% grass silage + 45% hydroponic maize fodder + 10% L. leucocephala + 30% concentrate (FCG2); and 60% hydroponic maize fodder + 10% L. leucocephala + 30% concentrate (FCG3). Goats on FCG3 had lower (p<0.05) dry matter intake (152.48 g/day) compared to FCG0 (226.83 g/day). Nutrient digestibility, including organic matter and crude fiber, improved (p<0.05) in FCG3 (77.21% and 66.12%) compared to FCG0 (76.62% and 52.27%). Total volatile fatty acids (VFA) increased in FCG3 (131.54 mM) compared to FCG0 (111.73 mM). However, no significant differences were observed in ruminal ammonia (NH₃-N), ruminal pH, or blood metabolites. In conclusion, substituting grass silage with hydroponic maize fodder enriched with fermented compost tea up to 75% of the diet improved digestibility and rumen fermentation without negatively affecting intake, digestibility, or blood metabolites in Kacang goats, suggesting its potential as an alternative feed. However, complete substitution (100%) reduced intake, indicating challenges at higher substitution levels.
References
AOAC. 2005. Methods of Analysis of the Association of Official Agricultural Chemists. Association of Official Agricultural Chemists, Washington D.C.
Alharthi, A. S., H. H. Al-Baadani, M. M. Abdelrahman, & I. A. Alhidary. 2023. Effects of feeding different levels of sprouted barley on fermentation characteristics, bacterial quantification, and rumen morphology of growing lambs. Vet. Sci. 10:15. https://doi.org/10.3390/vetsci10010015
Amalyadi, R., N. Umami, N. A. Fitrianto, C. Hanim, & B. Suwignyo. 2022. Effect of compost tea and harvest age on productivity, nutrient content, and in vitro digestibility cichorium intybus. Buletin Peternakan 46:140-147. https://doi.org/10.21059/buletinpeternak.v46i3.67834
Arif, M., A. Iram, M. Fayyaz, M. E. Abd El-Hack, A. E. Taha, K. A. Al-Akeel, A. A. Swelum, A. R. Alhimaidi, A. Ammari, M. A. E. Naiel, & M. Alagawany. 2023. Feeding barley and corn hydroponic based rations improved digestibility and performance in Beetal goats. J. King Saud Univ. Sci. 35:1-6. https://doi.org/10.1016/j.jksus.2022.102457
Ashour, E. H., A. H. Afify, A. A. Mehesen, R. M. Zaki, & A. M. El-Sawah. 2023. Response of wheat to cyanobacteria and compost tea applications as a tool to achieve bio-organic farming concept. World J. Adv. Res. Rev. 17:1046–1058. https://doi.org/10.30574/wjarr.2023.17.1.0144
Benu, I., I. G. N. Jelantik, M. L. Mullik, G. E. M. Malelak, G. Oematan, & M. M. Laut. 2024a. Improving feed intake, digestibility, rumen fermentation, and blood profiles in Kacang goats through Pueraria phaseoloides supplementation in kume grass hay diets. Trop. Anim. Sci. J. 47:79-86. https://doi.org/10.5398/tasj.2024.47.1.79
Benu, I., I. G. N. Jelantik, C. L. Penu, & M. M. Laut. 2024b. Effect of replacing grass silage with hydroponic maize fodder on nutrient intake and digestibility, rumen parameters and blood metabolites of weaned Ongole x Brahman calves. Jurnal Ilmu Ternak Veteriner 29:36-44. https://doi.org/10.14334/jitv.v29i1.3331
Bhaumik, S., Rajeev, S. Kumar, S. Fayaz, M. Choudhary, K. Narender, & S. Sharma. 2023. impact of nutrients on the development and yield of fodder maize (Zea mays L.): A Review. Agric. Rev. 2631:1–7. https://doi.org/10.18805/ag.R-2631
Chethan, K. P., N. K. S. Gowda, T. M. Prabhu, P. Krishnamoorthy, D. K. Dey, K. Giridhar, & S. Anandan. 2022. Nutritional evaluation of hydroponic maize (Zea mays) grain sprouts as a newer green feed resource in lambs. Indian J. Anim. Res. 56:434–443. https://doi.org/10.18805/IJAR.B-4780
De Oliveira, F. M., E. Detmann, S. De C. V. Filho, E. D. Batista, L. M. De A. Rufino, M. M. Barbosa, & A. R. Lopes. 2017. Intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage and supplemented with nitrogen and different levels of starch. Asian-Australas. J. Anim. Sci. 30:797–803. https://doi.org/10.5713/ajas.16.0629
Ebenezer, R. J., T. G. Paulpandi, T. S. Kumar, A. Gopinathan, & S. M. Sundaram. 2021. Supplementation of the diets with hydroponic maize fodder affects digestibility, puberty, sexual behavior, and semen characteristics in buck kids. Trop. Anim. Health Prod. 53:310. https://doi.org/10.1007/s11250-021-02761-9
Fanta, Y., Y. Kechero, & N. Yemane. 2024. Nutritional response to water hyacinth (Eichhornia crassipes) challenges via blood biochemical profiles in goats and sheep. Heliyon 10:e28424. https://doi.org/10.1016/j.heliyon.2024.e28424
Farghaly, M. M., M. A. M. Abdullah, I. M. I. Youssef, I. R. Abdel-Rahim, & K. Abouelezz. 2019. Effect of feeding hydroponic barley sprouts to sheep on feed intake, nutrient digestibility, nitrogen retention, rumen fermentation and ruminal enzymes activity. Livest. Sci. 228:31–37. https://doi.org/10.1016/j.livsci.2019.07.022
Fayed, A. 2011. Comparative study and feed evaluation of sprouted barley grains on rice straw versus tamarix mannifera on performance of growing Barki lambs in Sinai. J. Am. Sci. 7:111–127.
Gomes, A. L. M., H. U. Auerbach, G. Lazzari, A. Moraes, L. G. Nussio, C. C. Jobim, & J. L. P. Daniel. 2021. Sodium nitrite-based additives improve the conservation and the nutritive value of guinea grass silage. Anim. Feed Sci. Technol. 279:115033. https://doi.org/10.1016/j.anifeedsci.2021.115033
Haselmann, A., M. Wenter, B. Fuerst-Waltl, W. Zollitsch, Q. Zebeli, & W. Knaus. 2020. Comparing the effects of silage and hay from similar parent grass forages on organic dairy cows’ feeding behavior, feed intake and performance. Anim. Feed Sci. Technol. 267:114560. https://doi.org/10.1016/j.anifeedsci.2020.114560
Harwanto, E. Hendarto, Bahrun, J. J. Putra, & N. Hidayat. 2021. Pengaruh perbedaan level pupuk urin terfermentasi pada media tanam hidroponik terhadap komposisi dan kecernaan nutrient fodder sorghum. Livest. Anim. Res. 19:274-281. https://doi.org/10.20961/lar.v19i3.46138
Havekes, C. D., T. F. Duffield, A. J. Carpenter, & T. J. De Vries. 2020. Moisture content of high-straw dry cow diets affects intake, health, and performance of transition dairy cows. J. Dairy Sci. 103:1500–1515. https://doi.org/10.3168/jds.2019-17557
IBM Corp. 2017. IBM SPSS Statistic for Windows, Version 25. Armonk, N.Y USA. IBM Corp.
Ingram, D. T. & P. D. Milnerr. 2007. Factors affecting compost tea as a potential source of Escherichia coli and Salmonella on fresh produce. J. Food Prot. 70:828-834. https://doi.org/10.4315/0362-028X-70.4.828
Jediya, H. K., C. S. Vaishnava, R. K. Dhuria, K. A. Shende, & Y. K. Barolia. 2021. Effect of hydroponic maize fodder as partial substitute with concentrate mixture on nutrient intake of gir calves. J. Etnomol. Zool. Stud. 9:170–172. https://doi.org/10.22271/j.ento.2021.v9.i2c.8475
Joshi, M., S. K. Sharma, & C. S. Vaishnava. 2024. Effects of hydroponic maize fodder with and without supplementation of probiotics (Saccharomysis cerevisiae) on rumen parameters in calves. IJBSM 15:01–06. https://doi.org/10.23910/1.2024.5273
Lei, Y. G., X. Y. Li, Y. Y. Wang, Z. Z. Li, Y. L. Chen, & Y. X. Yang. 2017. Determination of ruminal dry matter and crude protein degradability and degradation kinetics of several concentrate feed ingredients in cashmere goat. J. Appl. Anim. Res. 46:134-140. https://doi.org/10.1080/09712119.2016.1276916
Lim, W. C., M. N. H. M. Nadzir, M. W. H. Hiew, Md. S. Mamat, & S. Shohaimi. 2022. Feed intake, growth performance and digestibility of nutrients of goats fed with outdoor-grown hydroponic maize sprouts. Pertanika J. Trop. Agric. Sci. 45:321–336. https://doi.org/10.47836/pjtas.45.1.19
Moorby, J. & M. Fraser. 2021. Review: New feeds and new feeding systems in intensive and semi-intensive forage-fed ruminant livestock systems. Anim. 15. https://doi.org/10.1016/j.animal.2021.100297
Naik, P. K., R. B. Dhuri, M. Karunakaran, B. K. Swain, & N. P. Singh. 2014. Effect of feeding hydroponics maize fodder on digestibility of nutrients and milk production in lactating cows. Indian J. Anim. Sci. 84:880–883. https://doi.org/10.56093/ijans.v84i8.43275
Naik, P. K., B. K. Swain, & N. P. Singh. 2015. Production and utilisation of hydroponics fodder. Indian J. Anim. Nutr. 32:1–9.
Nugroho, H. D., I. G. Permana, & Despal. 2015. Utilization of bioslurry on maize hydroponic fodder as a corn silage supplement on nutrient digestibility and milk production of dairy cows. Med. Pet. 38:70–76. https://doi.org/10.5398/medpet.2015.38.1.70
Okere, C., R. King, & N. Gurung. 2022. Seasonal variations in hematological and serum biochemical parameters in kiko meat goats under semi-intensive management systems. Anim. Res. Vet. Sci. 6:1–9. https://doi.org/10.24966/ARVS-3751/100037
Ramos-Morales, E., A. Arco-Pérez, A. I. Martín-García, D. R. Yáñez-Ruiz, P. Frutos, & G. Hervás. 2014. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim. Feed Sci. Tech. 198:57–66. https://doi.org/10.1016/j.anifeedsci.2014.09.016
Ren, P., M. Deng, J. Feng, R. Li, X. Ma, J. Liu, & D. Wang. 2022. Partial replacement of oat hay with whole-plant hydroponic barley seedlings modulates ruminal microbiota and affects growth performance of Holstein heifers. Microorganisms 10:2000. https://doi.org/10.3390/microorganisms10102000
Riaz, M. Q., K. H. Südekum, M. Clauss, & A. Jayanegara. 2014. Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: A meta-analysis. Livest. Sci. 162:76–85. https://doi.org/10.1016/j.livsci.2014.01.009
Sneath, M. R. & M. F. Mcintosh. 2003. Review of Hydroponic Fodder Production for Beef Cattle. Report Prepared for MLA. Meat & Livestock Australia Limited, North Sydney NSW.
Thakur, P., K. Kumar, N. Ahmed, D. Chauhan, Q. Ul, E. H. Rizvi, S. Jan, T. P. Singh, & H. S. Dhaliwal. 2021. Current research in food science effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentu). Curr. Res. Food Sci. 4:917–925. https://doi.org/10.1016/j.crfs.2021.11.019
Wu, Z. H., C. Du, M. J. Hou, L. S. Zhao, L. Ma, L. A. Sinclair, & D. P. Bu. 2024. Hydroponic barley supplementation fed with high protein diets improves the production performance of lactating dairy cows. J. Dairy Sci. 107:7744-7755. https://doi.org/10.3168/jds.2023-24178
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.