The Quality of Gaga Roosters Semen During Cold Storage Using a Diluent Supplemented with Sorbitol
Abstract
This study aimed to examine the effect of adding different concentrations of sorbitol to the Ringer’s lactate-egg yolk (RLEY) diluent on the quality of Gaga roosters’ semen during cold storage. A completely randomized design was used with 10 replicates and 4 levels of diluent treatment, including control, 1%, 2%, and 3% sorbitol. Semen was collected using a massage method, followed by fresh semen evaluation and dilution with a ratio of 1:5. Semen was stored at a cold temperature (5 ºC) and observed after 0, 24, 48, and 72 hours. The variables observed were semen pH, motility, kinematics, viability, plasma membrane integrity, acrosome integrity, malondialdehyde (MDA), and intracellular calcium ion (Ca2+) concentrations of sperm. All data were analyzed using analysis of variance (ANOVA). Subsequently, the evaluation of sperm mitochondrial activity and DNA damage was carried out, and the data were analyzed using the T-test. The results showed that treatment with sorbitol in the diluent had no effect on semen pH, kinematics (except straightness), acrosomal cap integrity, DNA damage, mitochondrial activity, and MDA concentration. However, sorbitol concentrations significantly affect (p<0.05) total motility, progressive motility, static motility, STR, viability, plasma membrane integrity, and intracellular Ca2+. In conclusion, the addition of 1-3% sorbitol preserves the quality of Gaga roosters’ semen during 72 hours of cold storage.
References
Agarwal, A., S. Gupta, & R. Sharma. 2016. Eosin-Nigrosin Staining Procedure. In: A. Agarwal, S. Gupta, & R. Sharma (Eds.). Andrological Evaluation of Male Infertility: A Laboratory Guide. Springer, Switzerland. pp. 73-77. https://doi.org/10.1007/978-3-319-26797-5_8
Aitken, R. J., Z. Gibb, M. A. Baker, J. Drevet, & P. Gharagozloo. 2016. Causes and consequences of oxidative stress in spermatozoa. Reprod. Fertil. Dev. 28:1-10. https://doi.org/10.1071/RD15325
Alipour-Jenaghard, P., H. Daghigh-Kia, R. Masoudi, G. Moghaddam, & B. Qasemi-Panahi. 2023. Mitochondria-targeted antioxidant “MitoQ” improves rooster’s cooled sperm quality indicators and reproductive performance. Theriogenology 197:26-30. https://doi.org/10.1016/j.theriogenology.2022.11.034
Arif, M., C. M. Airin, D. S. Datrianto, & D. A. R. Sejati. 2023. Influence of honey on sperm traits in KUB rooster concerning cold storage. Adv. Anim. Vet. Sci. 11:246-251. https://doi.org/10.17582/journal.aavs/2023/11.2.246.251
Ashizawa, K., A. Hashiguchi, & Y. Tsuzuki. 1992. Intracellular free Ca2+ concentration in fowl spermatozoa and its relationship to motility and respiration in spermatozoa. Reproduction 96:395–405. https://doi.org/10.1530/jrf.0.0960395
Balogun, A. S. 2021. Optimizing liquid storage duration of two poultry species semen with plant based extender: Semen preservation in poultry. Lett. Anim. Biol. 1:1-6. https://doi.org/10.62310/liab.v1i2.62
Bebas, W., T. G. O. Pemayun, I. M. Damriyasa, & I. N. Mantik-Astawa. 2015. Lactose-astaxanthin increases green jungle fowl’s sperm motility and reduces sperm DNA fragmentation during 5o celsius storage. Bali Med. J. 4:152-156.
Blank, M. H., L. P. Ruivo, G. A. Novaes, E. C. Lemos, J. D. A. Losano, A. F. P. Siqueira, & R. J. G. Pereira. 2021. Assessing different liquid-storage temperatures for rooster spermatozoa. Anim. Reprod. Sci. 233:106815. https://doi.org/10.1016/j.anireprosci.2021.106845
Blesbois, E. 2012. Biological features of the avian male gamete and their application to biotechnology of conservation. J. Poult. Sci. 49:141–149. https://doi.org/10.2141/jpsa.011120
Bugiwati, S. R. A. & F. Ashari. 2013. Crowing sound analysis of Gaga’ chicken: Local chicken from South Sulawesi Indonesia. Int. J. Pl. Anim. Environm. Sci. 3:162-168.
Cao, W., H. K. Aghajanian, L. A. Haig-Ladewig, & G. L. Gerton. 2009. Sorbitol can fuel mouse sperm motility and protein tyrosine phosphorylation via sorbitol dehydrogenase. Biol. Reprod. 80:124-133. https://doi.org/10.1095/biolreprod.108.068882
Chandler-Brown, D., H. Choi, S. Park, B. R. Ocampo, S. Chen, A. Le, G. L. Sutphin, L. S. Shamieh, E. D. Smith, & M. Kaeberlein. 2015. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans. Front. Genet. 6:316. https://doi.org/10.3389/fgene.2015.00316
Chankitisakul, V., W. Boonkum, T. Kaewkanha, M. Pimprasert, R. Ratchamak, S. Authaida, & P. Thananurak. 2022. Fertilizing ability and survivability of rooster sperm diluted with a novel semen extender supplemented with serine for practical use on smallholder farms. Poult. Sci. 101:102188. https://doi.org/10.1016/j.psj.2022.102188
Conrozier, T. 2018. Is the addition of a polyol to hyaluronic acid a significant advance in the treatment of osteoarthritis?. Curr. Rheumatol. Rev. 14:226-230. https://doi.org/10.2174/1573397113666170710115558
Eslami, M., A. Ghaniei, & H. M. Rad. 2016. Effect of the rooster semen enrichment with oleic acid on the quality of semen during chilled storage. Poult. Sci. 95:1418-1424. https://doi.org/10.3382/ps/pew041
Eslami, M., E. Z. Hashem, A. Ghaniei, & H. Sayyah-Atashbeig. 2018. Evaluation of linoleic acid on lipid peroxidative/antioxidative parameters, motility and viability of rooster spermatozoa during cold storage. Cell Tissue Bank. 19:799–807. https://doi.org/10.1007/s10561-018-9738-6
Froman, D. P. 2016. Deduction of a calcium ion circuit affecting rooster sperm in vitro. J. Anim. Sci. 94:3198-3205. https://doi.org/10.2527/jas.2016-0507
Getachew, T., N. Ameha, & M. Tefera. 2015. Effect of fructose addition in skim milk based extender on semen quality and fertility in white leghorn chicken. Ethiopian Veterinary Journal 19:23-34. https://doi.org/10.4314/evj.v19i1.2
Gibb, Z. & R. J. Aitken. 2016. The impact of sperm metabolism during in vitro storage: The stallion as a model. Biomed. Res. Int. 2016:9380609. https://doi.org/10.1155/2016/9380609
Gong, D., X. Chi, K. Ren, G. Huang, G. Zhou, N. Yan, J. Lei, & Q. Zhou. 2018. Structure of the human plasma membrane Ca2+-ATPase 1 in complex with its obligatory subunit neuroplastin. Nat. Commun. 9:3623. https://doi.org/10.1038/s41467-018-06075-7
Fattah, A., M. Sharafi, R. Masoudi, A. Shahverdi, & V. Esmaeili. 2017. L-Carnitine is a survival factor for chilled storage of rooster semen for a long time. Cryobiology 74:13–18. https://doi.org/10.1016/j.cryobiol.2016.12.011
Ip, W. E. & R. Medzhitov. 2015. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6:6931. https://doi.org/10.1038/ncomms7931
Jin, S. K. & W. X. Yang. 2017. Factors and pathways involved in capacitation: How are they regulated?. Oncotarget 8:3600-3627. https://doi.org/10.18632/oncotarget.12274
Juan, C. A., J. M. Pérez de la Lastra, F. J. Plou, & E. Pérez-Lebeña. 2021. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 22:4642. https://doi.org/10.3390/ijms22094642
Kawanami, D., K. Matoba, & K. Utsunomiya. 2016. Signaling pathways in diabetic nephropathy. Histol. Histopathol. 31:1059-1067.
Khaeruddin, K., G. Ciptadi, M. Yusuf, S. B. Udrayana, S. Iswati, & S. Wahjuningsih. 2024a. Effectiveness of butylated hydroxytoluene in maintaining the quality of Gaga chicken sperm in liquid storage for 72 hours. Adv. Anim. Vet. Sci. 12:371-380. https://doi.org/10.17582/journal.aavs/2024/12.2.371.380
Khaeruddin, K., G. Ciptadi, M. Yusuf, W. Sawitri, C. Chotimah, & S. Wahjuningsih. 2024b. Effects of sorbitol and butylated hydroxytoluene on quality, lipid peroxidation, and intracellular calcium concentration of Gaga chicken frozen sperm. Int. J. Agric. Biol. 32:62‒70.
Kheawkanha, T., V. Chankitisakul, P. Thananurak, M. Pimprasert, W. Boonkum, & T. Vongpralub. 2023. Solid storage supplemented with serine of rooster semen enhances higher sperm quality and fertility potential during storage at 5 °C for up to 120 h. Poult. Sci. 102:102648. https://doi.org/10.1016/j.psj.2023.102648
Khodaei-Motlagh, M., R. Masoudi, M. J. Karimi-Sabet, & A. Hatefi. 2022. Supplementation of sperm cooling medium with zinc and zinc oxide nanoparticles preserves rooster sperm quality and fertility potential. Theriogenology 183:36-40. https://doi.org/10.1016/j.theriogenology.2022.02.015
Kucera, A. C. & B. J. Heidinger. 2018. Avian semen collection by cloacal massage and isolation of DNA from sperm. J. Vis. Exp. 132:e55324 https://doi.org/10.3791/55324
Lemoine, M., S. Mignon-Grasteau, I. Grasseau, M. Magistrini, & E. Blesbois. 2011. Ability of chicken spermatozoa to undergo acrosome reaction after liquid storage or cryopreservation. Theriogenology 75:122-130. https://doi.org/10.1016/j.theriogenology.2010.07.017
Liu, T., Y. Han, T. Zhou, R. Zhang, H. Chen, S. Chen, & H. Zhao. 2019. Mechanisms of ROS-induced mitochondria-dependent apoptosis underlying liquid storage of goat spermatozoa. Aging 11:7880-7898. https://doi.org/10.18632/aging.102295
Łukaszewicz, E., A. Jerysz, & A. Kowalczyk. 2020. Effect of semen extenders on viability of ISA Brown and Hubbard Flex roosters’ sperm stored for 24 h. Poult. Sci. 99:2766-2774. https://doi.org/10.1016/j.psj.2019.12.055
Mohan, J., S. K. Sharma, G. Kolluri, & K. Dhama. 2018. History of artificial insemination in poultry, its components and significance. Worlds Poult. Sci. J. 74:475-488. https://doi.org/10.1017/S0043933918000430
Masoudi, R., M. Sharafi, & L. Pourazadi. 2019. Improvement of rooster semen quality using coenzyme Q10 during cooling storage in the Lake extender. Cryobiology 88:87–91. https://doi.org/10.1016/j.cryobiol.2019.03.003
Masoudi, R., M. Sharafi, L. Pourazadi, N. D. Davachi, N. Asadzadeh, S. Esmaeilkhanian, & E. Dirandeh. 2020. Supplementation of chilling storage medium with glutathione protects rooster sperm quality. Cryobiology 92:260-262. https://doi.org/10.1016/j.cryobiol.2019.10.005
Mavi, G. K., P. P. Dubey, S. K. Sahoo, & R. S. Grewal. 2022. Effect of α-tocopherol supplementation in rooster semen on sperm quality parameters during in-vitro storage at 4 °C. Indian Journal Animal Reproduction 43:43-46. https://doi.org/10.48165/ijar.2022.43.1.7
Matuz-Mares, D., M. González-Andrade, M. G. Araiza-Villanueva, M. M. Vilchis-Landeros, & H. Vázquez-Meza. 2022. Mitochondrial calcium: Effects of its imbalance in disease. Antioxidants 11:801. https://doi.org/10.3390/antiox11050801
McCue, P. M. 2021. Evaluation of pH and Osmolarity of Semen. In: J. Dascanio, & McCue, P. M. (Eds.). Equine Reproductive Procedures. John Wiley & Sonc, Inc., New York, p. 521-522. https://doi.org/10.1002/9781119556015.ch140
Mussa, N. J., R. Ratchamak, T. Ratsiri, T. Vongpralub, W. Boonkum, Y. Semaming, & V. Chankitisakul. 2021. Lipid profile of sperm cells in thai native and commercial roosters and its impact on cryopreserved semen quality. Trop. Anim. Health Prod. 53:321. https://doi.org/10.1007/s11250-021-02664-9
Najafi, A., R. A. Taheri, M. Mehdipour, & F. Mart. 2019. Improvement of post-thawed sperm quality in broiler breeder roosters by ellagic acid-loaded liposomes. Poult. Sci. 98:440–446. https://doi.org/10.3382/ps/pey353
Nguyen, T. M. D. 2019. Main signaling pathways involved in the control of fowl sperm motility. Poult. Sci. 98:1528-1538. https://doi.org/10.3382/ps/pey465
Nguyen, T. M. D., A. Duittoz, C. Praud, Y. Combarnous, & E. Blesbois. 2016. Calcium channels in chicken sperm regulate motility and the acrosome reaction. FEBS J. 283:1902-1920. https://doi.org/10.1111/febs.13710
Noegroho, B. S., S. Siregar, & K. A. G. Tampubolon. 2022. Antioxidant supplementation on sperm DNA fragmentation and sperm parameters: A systematic review and meta-analysis. Turk. J. Urol. 48:336-345. https://doi.org/10.5152/tud.2022.22058
Opuwari, C. S. & R. R. Henkel. 2016. An update on oxidative damage to spermatozoa and oocytes. Biomed. Res. Int. 2016:9540142. https://doi.org/10.1155/2016/9540142
Parodi, J. 2014. Motility, viability, and calcium in the sperm cells. Syst. Biol. Reprod. Med. 60:65-71. https://doi.org/10.3109/19396368.2013.869273
Partyka, A. & W. Niżański. 2022. Advances in storage of poultry semen. Anim. Reprod. Sci. 246:106921. https://doi.org/10.1016/j.anireprosci.2021.106921
Partyka, A, W. Nizański, M. Bratkowska, & P. Maślikowski. 2015. Effects of N-acetyl-L-cysteine and catalase on the viability and motility of chicken sperm during liquid storage. Reprod. Biol. 15:126–129. https://doi.org/10.1016/j.repbio.2015.03.001
Prochowska, S., D. Bonarska-Kujawa, Ł. Bobak, M. Eberhardt, & W. Niżański. 2024. Fatty acid composition and biophysical characteristics of the cell membrane of feline spermatozoa. Sci. Rep. 14:10214. https://doi.org/10.1038/s41598-024-61006-5
Rad, H. M., M. Eslami, & A. Ghanie. 2016. Palmitoleate enhances quality of rooster semen during chilled storage. Anim. Reprod. Sci. 165:38-45. https://doi.org/10.1016/j.anireprosci.2015.12.003
Reynolds, S., N. F. B. Ismail, S. J. Calvert, A. A. Pacey, & M. N. Paley. 2017. Evidence for rapid oxidative phosphorylation and lactate fermentation in motile human sperm by hyperpolarized 13 °C magnetic resonance spectroscopy. Sci. Rep. 7:4322. https://doi.org/10.1038/s41598-017-04146-1
Rui, B. R., D. S. Angrimani, J. D. A. Losano, L. de C. Bicudo, M. Nichi, & R. J. Pereira. 2017. Validation of simple and cost-effective stains to assess acrosomal status, DNA damage and mitochondrial activity in rooster spermatozoa. Anim. Reprod. Sci. 187:133-140. https://doi.org/10.1016/j.anireprosci.2017.10.017
Sangani, A. K., A. A. Masoudi, & R. V. Torshizi. 2017. Association of mitochondrial function and sperm progressivity in slow- and fast-growing roosters. Poult. Sci. 96:211–219. https://doi.org/10.3382/ps/pew273
Sarkar, P. K. 2020. Motility, viability and fertilizing ability of avian sperm stored under in vitro conditions. Reviews Agricultural Science 8:15-27. https://doi.org/10.7831/ras.8.0_15
Sharideh, H., M. Zhandi, S. Zenioaldini, M. Zaghari, & M. Sadeghi. 2019. The effect of coenzyme Q10 on rooster semen preservation in cooling condition. Theriogenology 129:103-109. https://doi.org/10.1016/j.theriogenology.2019.02.028
Sieme, H., H. Oldenhof, & W. F. Wolkers. 2015. Sperm membrane behaviour during cooling and cryopreservation. Reprod. Domest. Anim. 50:20-26. https://doi.org/10.1111/rda.12594
Silyukova, Y., E. Fedorova, & O. Stanishevskaya. 2022. Influence of technological stages of preparation of rooster semen for short-term and long-term storage on its quality characteristics. Curr. Issues Mol. Biol. 44:5531-5542. https://doi.org/10.3390/cimb44110374
Sitaula, R., A. Fowler, M. Toner, & S. Bhowmick. 2010. A study of the effect of sorbitol on osmotic tolerance during partial desiccation of bovine sperm. Cryobiology 60:331-336. https://doi.org/10.1016/j.cryobiol.2010.03.004
Słowińska, M., E. Liszewska, S. Judycka, M. Konopka, & A. Cierezko. 2018. Mitochondrial membrane potential and reactive oxygen species in liquid stored and cryopreserved turkey (Meleagris gallopavo) spermatozoa. Poult. Sci. 83:1-9. https://doi.org/10.3382/ps/pey209
Sootsuwan, K., P. Thanonkeo, N. Keeratirakha, S. Thanonkeo, P. Jaisil, & M. Yamada. 2013. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol. Biofuels. 6:1-13. https://doi.org/10.1186/1754-6834-6-180
Sun, Y., F. Xue, Y. Li, L. Fu, H. Bai, H. Ma, S. Xu, & J. Chen. 2019. Differences in semen quality, testicular histomorphology, fertility, reproductive hormone levels, and expression of candidate genes according to sperm motility in Beijing-You chickens. Poult. Sci. 98:4182-4189. https://doi.org/10.3382/ps/pez208
Sushadi, P. S., M. Kuwabara, E. E. W. Maung, M. S. M. Mohtar, K. Sakamoto, V. Selvaraj, & A. Asano. 2023. Arresting calcium-regulated sperm metabolic dynamics enables prolonged fertility in poultry liquid semen storage. Sci. Rep. 13:21775. https://doi.org/10.1038/s41598-023-48550-2
Suwimonteerabutr, J., U. Yamsrikaew, K. Damthongsen, T. Suksirisamphan, P. Leeniwa, P. Lawanyakul, & M. Nuntapaitoon. 2024. Improving the quality of chilled semen from Thai native chicken using phosphorus and vitamin B12 supplementation in semen extender. Poult. Sci. 103:103262. https://doi.org/10.1016/j.psj.2023.103262
Taye, S. & W. Esatu. 2022. Potential and possibility of artificial insemination in poultry: A review article. Int. J. Adv. Res. Biol. Sci. 9:90-97.
Tesfay, H. H., Y. Sun, Y. Li, L. Shi, J. Fan, P. Wang, Y. Zong, A. Ni, H. Ma, A.I. Mani, & J. Chen. 2020. Comparative studies of semen quality traits and sperm kinematic parameters in relation to fertility rate between 2 genetic groups of breed lines. Poult. Sci. 99:6139-6146. https://doi.org/10.1016/j.psj.2020.06.088
Thananurak, P., N. Chuaychu-noo, A. Thélie, Y. Phasuk. T. Vongpralub, & E. Blesbois. 2019. Sucrose increases the quality and fertilizing ability of cryopreserved chicken sperms in contrast to raffinose. Poult. Sci. 98:4161-4171. https://doi.org/10.3382/ps/pez196
Tvrdá, E., M. Petrovičová, M. Ďuračka, F. Benko, T. Slanina, L. Galovičová, & M. Kačániová. 2023. Short-term storage of rooster ejaculates: sperm quality and bacterial profile differences in selected commercial extenders. Antibiotics 12:1284. https://doi.org/10.3390/antibiotics12081284
Walker, M. A. & R. Tian. 2018. NAD (H) in mitochondrial energy transduction: Implications for health and disease. Curr. Opin. Physiol. 3:101-109. https://doi.org/10.1016/j.cophys.2018.03.011
Wu, G. Q., C. R. Lv, Y. T. Jiang, S. Y. Wang, Q. Y. Shao, Q. H. Hong, & G. B. Quan. 2016. The replacement of monosaccharide by mannitol or sorbitol in the freezing extender enhances cryosurvival of ram spermatozoa. Biopreserv. Biobank. 14:357–366. https://doi.org/10.1089/bio.2015.0080
Yadav, D. K., S. Kumar, E. H. Choi, S. Chaudhary, & M. H. Kim. 2019. Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci. Rep. 9:4496. https://doi.org/10.1038/s41598-019-40913-y
Yoo, B. J. 2014. The effect of cryoprotectants on the properties of pacific sand lance Ammodytes personatus girard surimi during frozen storage. Fish. Aquatic. Sci. 17:291-298. https://doi.org/10.5657/FAS.2014.0291
Authors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.