Health Status of Broiler Chickens Fed Diets Containing Palm Kernel Cake with Enzyme Mixture Supplementation

S. Zubaidah, B. Ariyadi, C. Hanim, A. P. Baskara, Zuprizal

Abstract

Palm kernel cake (PKC) utilization as poultry feed has limitations due to its high crude fiber and non-starch polysaccharides, which make it difficult for poultry to digest. This study aimed to determine the effect of enzyme supplementation on blood profile, gastrointestinal health, and intestine histomorphology of broiler chickens fed PKC. This study used 1,080 Indian River strain roosters and two kinds of enzyme mixtures. Enzyme 1 consisted of mannanase 182 g/ton, NSPase 200 g/ton, and protease 130 g/ton, and Enzyme 2 consisted of mannanase 182 g/ton, NSPase 400 g/ton, and protease 260 g/ton. This study used six treatments and six replicates, and each replicate consisted of 30 birds. Data were analyzed using a completely randomized design with a factorial pattern of 2 × 3 and 6 replications. The treatment of factor A consisted of 3 levels of enzyme addition (No enzyme, Enzyme 1, and Enzyme 2), and factor B consisted of 2 levels of PKC (10% and 20%). The data obtained was analyzed using analysis of variance (ANOVA), and the significant difference among treatments was further analyzed using Duncan’s multiple range test. The experimental broilers fed PKC supplemented with enzyme had increased (p<0.05) villus height in the duodenum and ileum and decreased (p<0.05) relative weight percentage of the ventriculus (A2B1 and A3B1). The PKC supplementation increased (p<0.05) the relative weight percentage of proventriculus, duodenum, ileum, caecum, pH of ileum, crypta depth in the duodenum and ileum, but decreased (p<0.05) villus height in the jejunum. Enzyme supplementation increased (p<0.05) the plasma albumin, pH of duodenum, and villus width, but decreased crypta depth in the duodenum. This research concluded that Indian River strain roosters fed ration with 10% PKC supplemented with mannase, NPSase, and protease at doses of 182 g/ton, 200 g/ton, and 130 g/ton had the best health status.

References

Abdollahi, M. R., B. J. Hosking, D. Ning, & V. Ravindran. 2016. Influence of palm kernel meal inclusion and exogenous enzyme supplementation on growth performance, energy utilization, and nutrient digestibility in young broilers. Asian-Australas. J. Anim. Sci. 29:539–548. https://doi.org/10.5713/ajas.15.0224

Ali, M. S., G. H. Kang, & S. T. Joo. 2008. A Review: Influences of pre-slaughter stress on poultry meat quality. Asian-Australas. J. Anim. Sci. 21:912-916. https://doi.org/10.5713/ajas.2008.r.06

Alshelmani, M. L., T. C. Loh, & H. L. Foo. 2017. Effect of solid states fermentation on nutrient content and ileal amino acids digestibility of palm kernel cake in broiler chickens. Indian J. Anim. Sci. 87:1135-1140. https://doi.org/10.56093/ijans.v87i9.74331

Alshelmani, M. L., T. C. Loh, H. L. Foo, A. Q. Sazili, & W. H. Lau. 2016. Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on broiler growth performance, blood biochemistry, carcass characteristics, and meat quality. Anim. Prod. Sci. 57:216-224. https://doi.org/10.1016/j.anifeedsci.2016.03.019

Alshelmani, M. I., T. C. Loh, H. L. Foo, W. H. Lau, & A. Q. Sazili. 2014. Biodegradation of palm kernel cake by cellulolytic and hemicellulolytic bacterial cultures through solid state fermentation. Scientific World Journal 14:1-8. https://doi.org/10.1155/2014/729852

Alyileili, S. R., K. A. El-Trabily, I. E. H. Belai, W. H. Ibrahim, M. Sulaiman, & A. S. Hussein. 2020. Intestinal development and histomorphometry of broiler chickens fed Trichoderma reesei degraded date seed diets. Front. Vet. Sci. 7:1–9. https://doi.org/10.3389/fvets.2020.00349

Azizi, M. N., T. C. Loh, H. L. Foo, & E. L. T. Chung. 2021. Review: Is palm kernel cake a suitable alternative feed ingredient for poultry? Animals 11:4-15. https://doi.org/10.3390/ani11020338

Bogucka, J., A. Dankowiakowska, G. Elminowska-Wenda, A. Sobolwska, J. Jankowski, M. Szpinda, & M. Bednarczyk. 2017. Performance and small intestine morphology and ultrastructure of male broilers injected in ovo with bioactive substances. Annals Animal Science 17:179-195. https://doi.org/10.1515/aoas-2016-0048

Caldas, J. V., K. Vignale, N. Boonsinchai, J. Wang, M. Putsakum, J. A. England, & C. N. Coon. 2018. The effect of β-mannanase on nutrient utilization and blood parameters in chicks fed diets containing soybean meal and guar gum. Poult. Sci. 97:2807–2817. https://doi.org/10.3382/ps/pey099

Chacher, M. F. A., Z. Kamran, U. Ahsan, S. Ahmad, K. C. Koutoulis, H. G. Qutab Ud Din, & Ö. Cengiz. 2017. Use of mannan oligosaccharide in broiler diets: an overview of underlying mechanisms. Worlds Poult. Sci. J. 73:831-844. https://doi.org/10.1017/S0043933917000757

Chen, W. L., J. B. Liang, M. F. Jahromi, N. Abdullah, Y. W. Ho, & V. Tufarelli. 2014. Enzyme treatment enhances release of prebiotic oligosaccharides from palm kernel expeller. Bioresource 10:196-209. https://doi.org/10.15376/biores.10.1.196-209

Christensen, K., J. P. McMurtry, Y. V. Thaxton, A. Corzo, C. McDaniel, & C. G. Scanes. 2013. Metabolic and hormonal responses of growing modern meat-type chickens to fasting. Br. Poult. Sci. 54:199–205. https://doi.org/10.1080/00071668.2013.772953

Delezi, E., Q. Swennen, J. Buyse, & E. Decuypere. 2007. The effect of feed withdrawal and crating density in transit on metabolism and meat quality of broilers at slaughter weight. Poult. Sci. 86:1414–1423. https://doi.org/10.1093/ps/86.7.1414

Do Nascimento, G. S., R. P. Constantin, E. H. Giglioni, C. V. d. C. Ghizoni, A. Bracht, K. S. Utsunomiya, N. S. Yamamoto, E. L. I. Iwamoto, J. Constantin, & R. P. Constantin. 2018. The acute of citrus flavanones on the metabolism of glycogen and monosaccharides in the isolated perfused rat liver. Toxicol. Lett. 291:158-172. https://doi.org/10.1016/j.toxlet.2018.04.001

Fan, S. P., L. Q. Jiang, C. H. Chia, Z. Fang, S. Zakaria, & K. L. Chee. 2014. High yield production of sugars from deproteinated palm kernel cake under microwave irradiation via dilute sulfuric acid hydrolysis. Bioresour. Technol. 153:69–78. https://doi.org/10.1016/j.biortech.2013.11.055

Farouk, M. M., H. M. Al-Mazeedi, A. B. Sabow, A. E. D. Bekhit, K. D. Adeyemi, A. Q. Sazili, & A. Ghani. 2014. Halal and kosher slaughter methods and meat quality: A review. Meat Sci. 98:505-519. https://doi.org/10.1016/j.meatsci.2014.05.021

Gomes-Osorio, L. M., J. U. Nielson, H. J. Martens, & R. Wimmer. 2022. Upgrading the nutritional value of PKC using a Bacillus subtilis derived monocomponen β- mannanase. Molucules 27:1–4. https://doi.org/10.3390/molecules27020563

Gopinger, E., E. G. Xavier, M. C. Elias, A. A. S. Catalan, M. L. S. Castro, A. P. Nunes, & V. F. B. Roll. 2014. The effect of different dietary levels of canola meal on growth performance, nutrient digestibility, and gut morphology of broiler chickens. Poult. Sci. 93:1130-1136. https://doi.org/10.3382/ps.2013-03426

Greenacre, C. B. & T. Y. Moroshita. 2021. Backyard Poultry

Medicine and Surgery: A Guide for Veterinary Practitioner. Second Edition. John Wiley and Son, Inc. Hoboken, USA. p. 522.

Habte-Tsion, H. M. & V. Kumar. 2018. Nonstarch Polysaccharide Enzymes-General Aspects. Enzymes in Human and Animal Nutrition. Chapter 9. p. 183–209. Academic Press. https://doi.org/10.1016/B978-0-12-805419-2.00009-5

Hakim, A. H., I. Zulkifli, A. S. Farjam, E. A. Awad, & S. K. Ramiah. 2022. Impact of feeding fermented palm kernel cake and high dietary fat on nutrient digestibility, enzyme activity, intestinal morphology and intestinal nutrient transporters mRNA expression in broiler chickens under hot and humid conditions. Animals 12:1–14. https://doi.org/10.3390/ani12070882

Huang, L., L. Luo, Y. Zhuang, Z. Wang, & Z. Xia. 2018. Effect of the dietary probiotic, Enterococcus faecium NCIMB11181, on the intestinal barrier and system immune status in Escherichia coli O78-challenged broiler chickens. Probiotics Antimicrob. Proteins 11:946–956. https://doi.org/10.1007/s12602-018-9434-7

Jensen, J., P. I. Rustad, A. J. Kolnes, & Y. C. Lai. 2011. A Review: The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front. Physiol. 2:1–11. https://doi.org/10.3389/fphys.2011.00112

Koranteng, A. A. A., K. A. Gbogbo, B. A. Mensah, T. Boussai, C. T. F. Aina, & J. Glago. 2022. Impact of palm kernel cake with or without multi-blend enzyme on the growth performance and carcass traits of Sasso broilers. Int. J. Vet. Sci. Med. 10:80-89. https://doi.org/10.1080/23144599.2022.2125735

Lee, S. A., M. R. Bedford, & C. L. Walk. 2018. Meta-analysis: Explicit value of mono-componen proteases in monogastric diets. Poult. Sci. 97:2078–2085. https://doi.org/10.3382/ps/pey042

National Research Council (NRC). 1994. Nutrient Requirement for Poultry. Ninth Revised Edition. National Academy Press, Washington D. C. p. 27.

Moati, A. Y. A., N. M. Eissa, K. F. M. Aboulezz, & M. Younis. 2022. Effect of dietary supplementation of probiotics, enzymes and their combination on growth performance, meat yield, intestinal microbiota and plasma analysis of broiler chicks. Archives Agricultural Sciences Journal 5:136–152. https://doi.org/10.21608/aasj.2022.144587.1121

Okukpe, M. K., T. A. Aderibigde, & J. O. Atleh. 2019. Effect of supplementation of palm kernel cake (PKC) with enzyme xylanase on performance and gut microbiota of broiler chickens. Vidyodaya Journal Science 22:12–28. https://doi.org/10.4038/vjs.v22i1.6061

Okeudo, N. J., I. L. Onyike, C. V. Okoli, & I. L. Chielo. 2006. Production performance, meat quality and feed cost implications of utilizing high levels of palm kernel cake in broiler finisher diets. Int. J. Poult. 12:1160-1163. https://doi.org/10.3923/ijps.2006.1160.1163

Olukomaiya, O., C. Fernando, R. Mereddy, X. Li, & Y. Sultanbawa. 2019. Solid-state fermented plant protein resources in the diets of broiler chicken: A review. Anim. Nutr. 5:319–330. https://doi.org/10.1016/j.aninu.2019.05.005

Pasaribu, T., E. B. Laconi, & I. P. Kompiang. 2019. Evaluation of the nutrient contents of palm kernel cake fermented by microbial cocktails as a potential feedstuff for poultry. J. Indones. Trop. Anim. Agric. 44:295–302. https://doi.org/10.14710/jitaa.44.3.295-302

Prakatur, I., M. Miskulin, M. Pavic, K. Marjanovic, V. Blazicevic, I. Miskulin, & M. Domacinovic. 2019. Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals 9:1-12. https://doi.org/10.3390/ani9060301

Proszkowiec-Wegla, M., J. Dupont, N. Rideau, C. Gespach, J. Simon, & T. E. Porter. 2017. Insulin immuno-neutralization decreases food intake in chickens without altering hypothalamic mRNA levels for genes involved in regulation of food intake and metabolism. Poult. Sci. 96:4409–4418. https://doi.org/10.3382/ps/pex247

Pushpakumara, D. M. S., N. Priyankarage, W. A. D. Nayananjalie, D. L. Ranathunge, & D. Dissanayake. 2017. Effect of inclusion of palm (Elaeis guineensis) kernel cake in broiler chicken rations. Int. J. Livest. 7:103–109. https://doi.org/10.5455/ijlr.20170201053413

Rahim, F., Sabrina, Rusmawati, & M. Syibli. 2007. Broiler small intestine villi response to feed containing palm kernel cake which fermented with Rhizopus sp. J. Indones. Trop. Anim. Agric. 32:251-256.

Ravindran, V. & R. Abdollahi. 2021. Review: Nutrition and digestive physiology of broiler chick: State the art and outlook. Animals 11:1–23. https://doi.org/10.3390/ani11102795

Saeed, M., T. Ayasan, M. Alagawany, M. E. El-Hack, M. A. Abdel-Latif, & A. K. V. Patra. 2019. The role of β-mannanase (Hemicell) in improving poultry productivity, health and environment. Rev. Bras. Cienc. Avic. 21:1–8. https://doi.org/10.1590/1806-9061-2019-1001

Saenphoom, P., J. H. Liang, Y. W. Ho, T. C. Loh, & M. Rosfarizan. 2013. Effects of enzymes treated palm kernel expeller on metabolizable energy, growth perfoamce, villus height and digesta viscosity in broiler chickens. Asian-Australas. J. Anim. Sci. 26:537-544. https://doi.org/10.5713/ajas.2012.12463

Saleh, A. A., M. Mustafa, Dawood, N. A. Badawi, T. A. Ebeid, K. A. Amber, & M. M. Azzam. 2020. Effect of supplemental serine-protease from Bacillus licheniformis on growth performance and physiological change of broiler chickens. J. Appl. Anim. Res. 48:86-92. https://doi.org/10.1080/09712119.2020.1732986

Sanvictores, T., J. J. Casale, & M. R. Huecker. 2023. Physiology, Fasting. StatPealrs Publishing. National Library of Medicine. Physiology, Fasting - StatPearls - NCBI Bookshelf (nih.gov). Treasure Island, Florida USA.

Shastak, Y., P. Ader, D. Feuerstein, R. Ruehle, & M. Matuschek. 2019. ß–Mannan and mannanase in poultry nutrition. Worlds Poult. Sci J. 71:161–174. https://doi.org/10.1017/S0043933915000136

Shehata, A. A., S. Yalcin, J. D. latorre, S. Basiouni, Y. A. Attia, A. A. El-Wahab, C. Visscher, H. R. El-Seedi, C. Huber, H. M. Hafez, W. Eisenreich, & G. Tellez-Isaias. 2022. A Review: Probiotics, rebiotics, and phytogenic substances for optimizing gut health in poultry. Microorganism 10:1–15. https://doi.org/10.3390/microorganisms10020395

Singh, P. K., Chandramoni, A. Kumar, & S. Kumar. 2015. Animal Feed Additives. New India Publishing Agency, New Delhi. p. 18.

Steel, R. G. & J. H. Torrie. 1981. Principle and Procedures of Statistics: A Biometrical Approach. 2nd edition. McGraw Hill Book Co., Singapore. p. 355.

Stein, H. H., G. A. Casas, J. J. Abelilla, Y. Loiu, & R. S. Sulabo. 2015. Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs. J. Anim. Sci. Biotechnol. 6:1-9. https://doi.org/10.1186/s40104-015-0056-6

Sundu, B., A. Adjis, H. Hafsah, & M. Pamulu. 2024. The use of enzymatic pre-digestion of fermented palm kernel cake in the laying hens diet on production performance, nutrient digestibility, egg quality, and egg chemical content. Trop. Anim. Sci. J. 47:61–67. https://doi.org/10.5398/tasj.2024.47.1.61

Sureshkumar, S., J. Song. V. Sampath, & I. Kim. 2023. Exogenous enzymes as zootechnical additives in monogastric animal feed: A Review. Agriculture 13:1–14. https://doi.org/10.3390/agriculture13122195

Wang, J. H., T. Inoue, M. Higashiyama, P. H. Guth, E. Engel, J. D. Kaunits, & Y. Akiba. 2011. Umami receptor activation increases duodenal bicarbonate secretion via glucagon-like peptide-2 release in rats. J. Pharmacol. Exp. Ther. 339:464-473. https://doi.org/10.1124/jpet.111.184788

Wilkinson, J. M. & R. H. Young. 2020. A Review: Strategies to reduce on soya meal and palm kernel meal in livestock nutrition. J. Appl. Anim. Nutr. 8:75-82. https://doi.org/10.3920/JAAN2020.0007

Wu, X., Y. Zhou, Z. Lu, Y. Zhang, & T. Zhang. 2024. Effect of pre-slaughter fasting time on carcass yield, blood parameters and meat quality in broilers. Anim. Biosci. 37:315-322. https://doi.org/10.5713/ab.23.0262

Yaophakdee, N., Y. Ruangpanit, & S. Attamangkune. 2018. Effects of palm kernel meal level on live performance and gut morphology of broilers. Agric. Nat. Resour. 52:72–78. https://doi.org/10.1016/j.anres.2018.05.007

Zubaidah, S., C. Hanim, B. Ariyadi, A. P. Baskara, & Zuprizal. 2024. Nutrient composition and cell-wall structure of palm kernel cake supplemented with enzymes. Adv. Anim. Vet. Sci. 12:1191–1198. https://doi.org/10.17582/journal.aavs/2024/12.6.1191.1198

Authors

S. Zubaidah
B. Ariyadi
C. Hanim
c.hanim@ugm.ac.id (Primary Contact)
A. P. Baskara
Zuprizal
ZubaidahS., AriyadiB., HanimC., BaskaraA. P., & Zuprizal. (2024). Health Status of Broiler Chickens Fed Diets Containing Palm Kernel Cake with Enzyme Mixture Supplementation. Tropical Animal Science Journal, 47(4), 465-474. https://doi.org/10.5398/tasj.2024.47.4.465

Article Details