Supplementation of Zinc Palm Oil Soap Improves Feed Fermentability and Unsaturated Fatty Acid Profile in Rumen Liquid
Abstract
This study aimed to evaluate the effects of energy and organic zinc supplements, specifically zinc palm oil soap (ZPOS), on digestibility and unsaturated fatty acid profiles in vitro. The study used a completely randomized design with 4 treatments and 5 replications. The treatments were: T0= basal diet without supplementation, T1= basal diet + 5% palm oil (PO), T2= basal diet + 5% partial ZPOS (3.75% ZPOS + 1.25% PO), and T3= basal diet + 5% ZPOS. The inoculum source was rumen liquid from three fistulated female dairy goats and was homogenized. The goats were fed ration consisting of corn straw, soybean hulls, and concentrate containing total digestible nutrients (TDN) 63%, crude protein (CP) 14%, and neutral detergent fiber (NDF) 35%. Results showed that both 5% partial ZPOS and 5% ZPOS supplementation (T2 and T3) resulted in the increase of total volatile fatty acids (VFA), acetate, propionate, butyrate, unsaturated fatty acids (USFA) and a decrease in the ratio of acetate/propionate (A/P) compared to the control and supplementation of 5% PO (p<0.05). Supplementation of 5% partial ZPOS (T2) is better than 5% ZPOS because increased the digestibility of ether extract (EE), crude fiber (CF), NDF, and acids detergent fiber (ADF) (p<0.05) and decreased of methane compared to the control (p<0.05). In conclusion, adding 5% partial ZPOS (3.5% ZPOS and 1.5% PO) increases fiber digestibility, VFA, LCFA, and USFA concentration, and decreases methane production in the rumen liquid.
References
Amanullah, S. M., S. Lee, D. Hand, Vi. Paradhipta, Y. Joo, D. Kim, P. Seong, S. Jeong, & S. Kim. 2022. Impact of oil sources on in vitro fermentation, microbes, greenhouse gas, and fatty acid profile in the rumen. Fermentation 8:242. https://doi.org/10.3390/fermentation8050242
Anzhany, D., T. Toharmat, Despal, & A. Lozicki. 2024. Fatty Acid biohydrogenation, fermentation, and digestibility of ration containing napier and king grass with different harvest ages and altitudes: In vitro study. Trop. Anim. Sci. J. 47:68–78. https://doi.org/10.5398/tasj.2024.47.1.68
AOAC. 2012. Official Methods of Analysis. 19th ed. Association of Official Analytical Chemists, Washington, DC.
Benchaar, C., F. Hassanat, R. Martineau, & R. Gervais. 2015. Linseed Oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, n balance, and milk production. J. Dairy Sci. 98:7993–8008. https://doi.org/10.3168/jds.2015-9398
Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174:1–25. https://doi.org/10.1016/j.anifeedsci.2012.02.009
Cabatit, B. C. 1979. Laboratory Guide in Biochemistry. 10th ed. USA Press, Manila.
Chaney, A. L. & E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130–132. https://doi.org/10.1093/clinchem/8.2.130
Chen, M., Y. Xi, L. Zhang, H. Zeng, Y. Li, & Z. Han. 2019. Effects of zinc-bearing palygorskite on rumen fermentation in vitro. Asian-Australas. J. Anim. Sci. 32:63–71. https://doi.org/10.5713/ajas.17.0920
Cocks, L. V. & C. Van Rede. 1966. Laboratory Handbook for Oil and Fat Analysis. Academic Press, London.
Cottyn, B. G. & C. V. Boucque. 1968. Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem. 16:105–107. https://doi.org/10.1021/jf60155a002
Duffy, R., M. Yin, & L. E. Redding. 2023. A review of the impact of dietary zinc on livestock health. J. Trace Elem. Miner. 5:100085. https://doi.org/10.1016/j.jtemin.2023.100085
Faizah, L. I., W. Widiyanto, & A. Muktiani. 2019. The effect of total or partial protected vegetable oil supplementation on in vitro digestibility, feed fermentability and energy efficiency. Buletin Peternakan 43:171–178. https://doi.org/10.21059/buletinpeternak.v43i3.43231
Fellner, V., S. Durosoy, V. Kromm, & J. W. Spears. 2021. Effects of supplemental zinc on ruminal fermentation in continuous cultures. Appl. Anim. Sci. 37:27–32. https://doi.org/10.15232/aas.2020-02104
Franco, C. E., E. L. Rients, F. E. Diaz, S. L. Hansen, & J. L. McGill. 2024. Dietary zinc supplementation in steers modulates labile zinc concentration and zinc transporter gene expression in circulating immune cells. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-024-04123-6
Gao, J., M. Wang, Y. Jing, X. Sun, T. Wu, & L. Shi. 2016. Impacts of the unsaturation degree of long-chain fatty acids on the volatile fatty acid profiles of rumen microbial fermentation in goats in vitro. J. Integr. Agric. 15:2827–2833. https://doi.org/10.1016/S2095-3119(16)61418-1
Getabalew, M. & A. Negash. 2020. Nitrogen metabolism and recycling in ruminant animals : A review college of agricultural and natural resources science. Academic J. Nutr. 9:29–38.
Harvatine, K. J., Y. R. Boisclair, & D. E. Bauman. 2009. Recent advances in the regulation of milk fat synthesis. Animal 3:40–54. https://doi.org/10.1017/S1751731108003133
Hilal, E. Y., M. A. E. Elkhairey, & A. O. A. Osman. 2016. The role of zinc, manganse and copper in rumen metabolism and immune function: A review article. Open J. Anim. Sci. 6:304–324. https://doi.org/10.4236/ojas.2016.64035
Ibrahim, N. A., A. R. Alimon, H. Yaakub, A. A. Samsudin, S. C. L. Candyrine, W. N. Wan Mohamed, A. Md Noh, M. A. Fuat, & S. Mookiah. 2021. Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: A review. Trop. Anim. Health Prod. 53:422. https://doi.org/10.1007/s11250-021-02863-4
Khaskheli, A. A. & L. Chou. 2020. Evaluation of fatty acids composition, metabolizable energy, nutrients digestibility of crude palm oil fat crystals in Turkeys. Anim. Feed Sci. Technol. 270:114734. https://doi.org/10.1016/j.anifeedsci.2020.114734
Khotijah, L., E. I. Pandiangan, D. A. Astuti, & K. G. Wiryawan. 2017. Effect of sunflower oil supplementation as unsaturated fatty acid source on rumen fermentability and performance of lactating Garut ewes. J. Indones. Trop. Anim. Agric. 42:185–193. https://doi.org/10.14710/jitaa.42.3.185-193
Koushki, M., M. Nahidi, & F. Cheraghali. 2015. Physico-chemical properties, fatty acid profile and nutrition in palm oil. J. Paramed. Sci. 6:117–134.
Makkar, H. P. S., O. P. Sharma, R. K. Dawra, & S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170–2173. https://doi.org/10.3168/jds.S0022-0302(82)82477-6
Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono. 2015. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules 20:17339–17361. https://doi.org/10.3390/molecules200917339
Martínez, A. & D. C. Church. 1970. Effect of various mineral rumen cellulose elements. J. Anim. Sci. 31:982–990. https://doi.org/10.2527/jas1970.315982x
Muktiani, A., N. Arifah, & W. Widiyanto. 2020. Influence of different vegetable oils on in vitro ruminal fermentability and nutrient digestibility in ettawah crossbred goat. Anim. Prod. 21:22–29. https://doi.org/10.20884/1.jap.2019.21.1.689
Newbold, C. J., G. De la Fuente, A. Belanche, E. Ramos-Morales, & N. R. McEwan. 2015. The role of ciliate protozoa in the rumen. Fron. Microbiol. 6:1313. https://doi.org/10.3389/fmicb.2015.01313
Noland, D. & J. A. Drisko. 2020. Integrative and Fungsional Medical Nutrition Therapy. In: L. Wagner (Eds). Humana Press, Switzerland. https://doi.org/10.1007/978-3-030-30730-1
Ogimoto, K. & S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo.
Oliveira, A. S. 2015. Meta-analysis of feeding trials to estimate energy requirements of dairy cows under tropical condition. Anim. Feed Sci. Technol. 210:94–103. https://doi.org/10.1016/j.anifeedsci.2015.10.006
Orskov, E. R. & M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied Science, London (UK).
Pereira, G., P. Simões, R. Bexiga, E. Silva, L. Mateus, T. Fernandes, S. P. Alves, Rui J. B. Bessa, & L. Lopes-da-costa. 2022. Effects of feeding rumen-protected linseed fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations and metabolic and reproductive parameters. J. Dairy Sci. 105:361–374. https://doi.org/10.3168/jds.2021-20674
Rahman, H., J. P. Sitompul, & S. Tjokrodiningrat. 2022. The composition of fatty acids in several vegetable oils from Indonesia. Biodiversitas 23:2167–2176. https://doi.org/10.13057/biodiv/d230452
Ranasinghe, P., W. S. Wathurapatha, M. H. Ishara, R. Jayawardana, P. Galappatthy, P. Katulanda, & G. R. Constantine. 2015. Effects of zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab. 12:26. https://doi.org/10.1186/s12986-015-0023-4
Ranaweera, K. K. T. N., M. B. P. K. Mahipala, & W. M. P. B. Weerasinghe. 2020. Evaluation of energy balance in tropical and temperate crossbred dairy cows at post-partum transition stage: A case study. Trop. Agric. Res. 31:12-20. https://doi.org/10.4038/tar.v31i2.8363
Ridgway, N. D. 2016. Bichemistry of Lipid, Lipoprotein and Membranes. In R.S. McLeod (Eds). Elsevier, Netherland.
Roy, A., G. P. Mandal, & A. K. Patra. 2017. Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration in vitro. Vet. World 10:11–16. https://doi.org/10.14202/vetworld.2017.11-16
Santos, F. A., G. S. Cruz, F. A. Vieira, B. R. S. Queiroz, C. D. T. Freitas, F. P. Mesquita, & P. F. N. Souza. 2022. Systematic review of antiprotozoal potential of antimicrobial peptides. Acta Trop. 236:106675. https://doi.org/10.1016/j.actatropica.2022.106675
Satir, G., K. Utku, A. Musa, & Y. Hayati. 2023. Effects of adding rumen ‑ protected palm oil in diet on milk fatty acid profile and lipid health indices in Kivircik ewes. Trop. Anim. Health Prod. 55:159. https://doi.org/10.1007/s11250-023-03580-w
Sears, A., F. Hentz, J. de Souza, B. Wenner, Robert E. Ward, & F. Batistel. 2024. Supply of palmitic, stearic, and oleic acid changes rumen fiber digestibility and microbial composition. J. Dairy Sci. 107:902–916. https://doi.org/10.3168/jds.2023-23568
Shingfield, K. J. & R. J. Wallace. 2014. Synthesis of Conjugated Linoleic Acid in Ruminants and Humans. In: B. Sels and A. Philippaerts (Eds). Conjugated Linoleic Acids and Conjugated Vegetable Oils. The Royal Society of Chemistry. https://doi.org/10.1039/9781782620211-00001
Sloup, V., I. Jankovská, S. Nechybová, P. Peřinková, & I. Langrová. 2017. Zinc in the animal organism: A review. Sci. Agric. Bohem. 48:13–21. https://doi.org/10.1515/sab-2017-0003
Swain, P. S., S. B. N. Rao, D. Rajendran, G. Dominic, & S. Selvaraju. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2:134–141. https://doi.org/10.1016/j.aninu.2016.06.003
Tilley, J. M. A. & R. A. Terry. 1963. A two‐stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Tribout, T., S. Minéry, R. Vallée, S. Saille, D. Saunier, P. Martin, V. Ducrocq, & P. Faverdin. 2023. Genetic relationships between weight loss in early lactation and daily milk production throughout lactation in holstein cows. J. Dairy Sci. 106:4799–4812. https://doi.org/10.3168/jds.2022-22813
Uniyal, S., A. K. Garg, S. E. Jadhav, V. K. Chaturvedi, & R. K. Mohanta. 2017. Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in Guinea pigs. Livest. Sci. 204:59–64. https://doi.org/10.1016/j.livsci.2017.08.009
Vargas-bello-p, E., L. E. Robles-jimenez, R. Ayala-hern, J. Romero-bernal, N. Pescador-salas, & O. Alonso. 2020. Effects of calcium soaps from palm, canola and safflower oils on dry matter intake, nutrient digestibility, milk production, and milk composition in dairy goats. Animals 10:1728. https://doi.org/10.3390/ani10101728
Wang, C., Y. Z. Xu, L. Han, Q. Liu, G. Guo, W. J. Huo, J. Zhang, L. Chen, Y. L. Zhang, C. X. Pei, & S. L. Zhang. 2021. Effects of zinc sulfate and coated zinc sulfate on lactation performance, nutrient digestion and rumen fermentation in holstein dairy cows. Livest. Sci. 251:104673. https://doi.org/10.1016/j.livsci.2021.104673
Wang, S., Y. Wang, F. Shahidi, & C. Ho. 2020. Health Effects of Short‐Chain, Medium‐Chain, and Long‐Chain Fatty Acids, Saturated vs Unsaturated and Omega‐6 vs Omega‐3 Fatty Acids and Trans Fats. In: F. Shahidi (Ed). Bailey’s Industrial Oil and Fat Products: 7th ed. John Wiley & Sons, Ltd. https://doi.org/10.1002/047167849X.bio100
Wardeh, M. F. 1981. Models for Estimating Energy and Protein Utilization for Feeds: All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 4556. Utah State University, Utah, USA. https://doi.org/10.26076/9026-5aad
World Bank. 2020. Commodities Price Data (The Pink Sheet). Prospects Group - The World Bank, Washington, USA.
Wulandari, B. P. Widyobroto, & A. Agus. 2020. In vitro digestibility and ruminal fermentation profile of pangola grass (Digitaria decumbens) Supplemented with crude palm oil protected by sodium hydroxide. Livestock Research Rural Development. 32. https://www.lrrd.cipav.org.co/lrrd32/7/wulan32102.html.
Yanza, Y. R., M. Szumacher-Strabel, A. Jayanegara, A. M. Kasenta, M. Gao, H. Huang, A. K. Patra, E. Warzych, & A. Cieślak. 2021. The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and in vivo: A meta-analysis. J. Anim. Physiol. Anim. Nutr. 105:874–889. https://doi.org/10.1111/jpn.13367
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.