Optimizing Methane Production from Anaerobic Digestion of Dairy Cow Manure: The Potential Use of Carica (Carica pubescens) Seeds as a Co-Substrate

R. Purwasih, M. Saindah, H. Triyuwanti, F. S. Yusuf, A. Purnomoadi, E. Purbowati, S. Sutaryo

Abstract

A method to increase methane production in dairy cow manure (DCM) is to co-digest DCM with nutritious biomass. This study aimed to determine the methane yield during the anaerobic co-digestion of DCM and carica seeds meal (CSM). Four continuous stirred tank reactors were operated with treatments P0 (100% DCM), P1 (98% DCM and 2% CSM), P2 (96% DCM and 4% CSM), and P3 (94% DCM and 6% CSM). The results demonstrated that the presence of CSM as a co-substrate of DCM significantly increased (p<0.05) methane production. The average methane production resulting from P0, P1, P2, and P3 in units of mL/g substrate and mL/g volatile solid (VS)added were 10.05, 20.54, 32.26, and 19.29 mL/g substrate and 171.49, 278.96, 357.92 and 179.30 mL/g VSadded, respectively. Thus, the highest methane production was obtained at P2. Treatment P3 contained a substrate containing excessively high protein and organic content, negatively affecting anaerobic microorganisms’ activity. The presence of CSM as a co-substrate enhanced methane production by 91.94%–221.06% compared with the control. The presence of CSM as a co-substrate significantly increased (p<0.05) volatile fatty acid and total ammonia nitrogen (TAN) concentrations and the pH of digested slurries but did not affect VS reduction. The co-digestion of DCM and CSM must consider the proportion of organic material in the mixed substrate. In this study, the mixed substrate with a VS proportion of 51.68% was the best-mixed substrate.

References

Abeng, D., Sutaryo, S., Purnomoadi, A., Susanto, S., Purbowati, E., Adiwinarti, R., Purwasih, R., & Widiharih, T. (2024). Optimization of methane production from dairy cow manure and germinated papaya seeds using response surface methodology. Case Studies in Chemical and Environmental Engineering, 10, 100927. https://doi.org/10.1016/j.cscee.2024.100927

Angelidaki, I., Ellegaard, L., & Ahring, B. K. (2003). Applications of the anaerobic digestion process. In: Ahring, B.K., et al. Biomethanation II. Advances in biochemical engineering/biotechnology (pp. 82). Springer. https://doi.org/10.1007/3-540-45838-7_1

Agnihotri, S., Yin, D. M., Mahboubi, A., Sapmaz, T., Varjani, S., Qiao, W., Koseoglu-Imer, D. Y., & Taherzadeh, M. J. (2022). A glimpse of the world of volatile fatty acids production and application: a review. Bioengineered, 13(1), 1249–1275. https://doi.org/10.1080/21655979.2021.1996044

Ajayi-Banji. A., & Rahman, S. (2022). A review of process parameters influence in solid-state anaerobic digestion: Focus on performance stability thresholds. Renew. Renewable and Sustainable Energy Reviews, 167, 112756. https://doi.org/10.1016/j.rser.2022.112756

APHA. (2005). Standard method for examination of water and wastewater. In APHA: Vol. 20th Ed. American Public Health Association.

Briones-Labarca, V., Plaza-Morales, M., Giovagnoli-Vicuña, C., & Jamett, F. (2015). High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: Effects of extraction conditions and methods. LWT - Food Science and Technology, 60(1), 525-534. https://doi.org/10.1016/j.lwt.2014.07.057

BPS Wonosobo Regency. (2021). Jumlah unit usaha menurut skala usaha (mikro, kecil, menengah, dan usaha besar) dan sektor ekonomi di Kabupaten Wonosobo, 2021. Dinas Perdagangan Koperasi Dan Bisnis UKM Kabupaten Wonosobo. Retrieved January 16, 2024. https://wonosobokab.bps.go.id/statictable/2022/12/26/267/jumlah-unit-usaha-menurut-skala-usaha-mikro-kecil-menengah-dan-usaha-besar-dan-sektor-ekonomi-di-kabupaten-wonosobo-2021.html.

Choi, Y., Ryu, J., & Lee, S. R. (2020). Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. Journal of Animal Science and Technology, 62(1), 74–83. https://doi.org/10.5187/jast.2020.62.1.74

Emmerling, C., Krein, A., & Junk, J. (2020). Meta-analysis of strategies to reduce NH3 emissions from slurries in European agriculture and consequences for greenhouse gas emissions. Agronomy, 10(11), 1633. https://doi.org/10.3390/agronomy10111633

Elsamadony, M., Mostafa, A., Fujii, M., Tawfik, A., & Pant, D. (2021). Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. Water Research, 190, 1–17. https://doi.org/10.1016/j.watres.2020.116732

Gerardi, M. H. (2003). The microbiology of anaerobic digesters. John Wiley & Sons, Inc. https://doi.org/10.1002/0471468967

Hartadi, H., Reksohadiprodjo, S., Lebdosukojo, S., Tillman, A. D., Kearl, L. C., & Harris, L. E. (1980). Tables of feed composition for Indonesia. In International Feedstuffs Institute Utah Agricultural Experiment Station, Utah State University Logan.

Idayanti, R. W., Istianah, I., Putri, S. N. H., Fauziah, A. N., Murniyadi, Z., Esnadewi, L. G., Purbowati, E., Arifin, M., & Purnomoadi, A. (2024). Productivity, carcass traits, and meat quality of local lambs fed with carica pubescens seeds meal. Tropical Animal Science Journal, 47(1), 87–96. https://doi.org/10.5398/tasj.2024.47.1.87

Jiang, Y., McAdama, E., Zhang, Y., Heaven, S., Banks, C., & Longhurst, P. (2019). Ammonia inhibition and toxicity in anaerobic digestion: a critical review. Journal of Water Process Engineering, 32, 100899. https://doi.org/10.1016/j.jwpe.2019.100899

Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Nagy, K., Minárovits, J., Rákhely, G., & Kovács, K. L. (2015). Augmented biogas production from protein-rich substrates and associated metagenomic changes. Bioresource Technology, 178, 254–261. https://doi.org/10.1016/j.biortech.2014.08.111

Kaparaju, P., & Rintala, J. (2011). Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland. Renewable Energy, 36(1), 31–41. https://doi.org/10.1016/j.renene.2010.05.016

Li, Y., Zhao, J., Krooneman, J., & Euverink, G. J. W. (2021). Strategies to boost anaerobic digestion performance of cow manure: laboratory achievements and their full-scale application potential. Science of The Total Environment, 755(1), 142940. https://doi.org/10.1016/j.scitotenv.2020.142940

Li, P., Zhao, H., Cheng, C., Hou, T., Shen, D., & Jiao, Y. (2024). A review on anaerobic co-digestion of sewage sludge with other organic wastes for methane production: Mechanism, process, improvement and industrial application. Biomass and Bioenergy, 185, 107241. https://doi.org/10.1016/j.biombioe.2024.107241

Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. https://doi.org/10.1016/j.rser.2015.02.032

Mustikasari, A. R., Sutaryo, S., Ufidiyati, N., & Purnomoadi, A. (2023). The effect of using acidified imperata cylindrica as a co-substrate with dairy cow manure on the digesters performance. Tropical Animal Science Journal, 46(3), 361–366. https://doi.org/10.5398/tasj.2023.46.3.361

Nayeri, D., Mohammadi, P., Bashardoust, P., & Eshtiaghi, N. (2024). A comprehensive review on the recent development of anaerobic sludge digestions: performance, mechanism, operational factors, and future. Results in Engineering, 22, 102292. https://doi.org/10.1016/j.rineng.2024.102292

Nwokolo, N., Mukumba, P., Obileke, K., & Enebe, M. (2020). Waste to energy: a focus on the impact of substrate type in biogas production. Processes, 8(10), 1224. https://doi.org/10.3390/pr8101224

Purwasih, R., Sutaryo, S., Purbowati, E., & Purnomoadi, A. (2024). Evaluation of germination as pretreatment method to increase methane production: a case study in papaya seed. Case Studies in Chemical and Environmental Engineering, 10, 100788. https://doi.org/10.1016/j.cscee.2024.100788

Pramanik, S. K. (2022). Anaerobic co-digestion of municipal organic solid waste: Achievements and perspective. Bioresource Technology Reports, 20, 101284. https://doi.org/10.1016/j.biteb.2022.101284

Salsabila, S., & Broto, R. T. W. (2023). Optimization of papaya seed oil production process (Carica papaya L.) with soxhlation extraction method using factorial design. Journal of Vocational Studies on Applied Research, 5(1), 10–16. https://doi.org/10.14710/jvsar.v5i1.17308

Saputra, F., Sutaryo, S., & Purnomoadi, A. (2018). Utilization of tofu cake as co-substrate to produce biogas. Jurnal Aplikasi Teknologi Pangan, 7(3), 117–121. https://doi.org/10.17728/jatp.2315

Shrestha, S., Pandey, R., Aryal, N., & Lohani, S. P. (2023). Recent advances in co-digestion conjugates for anaerobic digestion of food waste. Journal of Environmental Management, 345, 118785. https://doi.org/10.1016/j.jenvman.2023.118785

Siddique, M. N. I., & Wahid, Z. A. (2018). Achievements and perspectives of anaerobic co-digestion: a review. Journal of Cleaner Production, 194(1), 359–371. https://doi.org/10.1016/j.jclepro.2018.05.155

Siles, J. A., Brekelmans, J., Martin, M. A., Chicas, A. F., & Martin, A. (2010). Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresource Technology, 101(23), 9040–9048. https://doi.org/10.1016/j.biortech.2010.06.163

Song, Y., Qiao, W., Westerholm, M., Huang, G., Taherzadeh, M. J., & Dong, R. (2023). Microbiological and technological insights on anaerobic digestion of animal manure: A review. Fermentation, 9(5), 1–22. https://doi.org/10.3390/fermentation9050436

Sutaryo, S., Ward, A. J., & Møller, H. B. (2014). Ammonia inhibition in thermophilic anaerobic digestion of dairy cattle manure. Journal of the Indonesian Tropical Animal Agriculture, 39(2), 83–90. https://doi.org/10.14710/jitaa.39.2.83-90

Sutaryo, S., Ward, A. J., & Møller, H. B. (2014a). The effect of mixed-enzyme addition in anaerobic digestion on methane yield of dairy cattle manure. Environmental Technology, 35(19), 2476–2482. https://doi.org/10.1080/09593330.2014.911356

Sutaryo, S., Sempana, A. N., Lestari, C. M. S., & Ward, A. J. (2020). Performance comparison of single and two-phase biogas digesters treating dairy cattle manure at tropical ambient temperature. Tropical Animal Science Journal, 43(4), 354–359. https://doi.org/10.5398/tasj.2020.43.4.354

Sutaryo, S., Sempana, A. N., Prayoga, L., Chaniaji, F. G., Dwitama, S. D., Sugandi, N. F., Purnomoadi, A., & Ward, A. J. (2022). Increased methane yield from dairy cow manure by co-substrate with Salvinia molesta. Asia-Pacific Journal of Science and Technology, 28(03), 28. https://doi.org/10.14456/apst.2023.39

Sutaryo, S., Huda, S., Toba, G. A., Izza, A. S., & Rianto, E. (2023). Anaerobic co-digestion of tempe wastewater and dairy cow dung. Livestock Research Rural Development, 35(12), 23–27.

Syaichurrozi, I. (2018). Biogas production from co-digestion Salvinia molesta and rice straw and kinetics. Renewable Energy, 115, 76–86. https://doi.org/10.1016/j.renene.2017.08.023

Syaichurrozi, I., Basyir, M. F., Farraz, R. M., & Rusdi, R. (2020). A preliminary study: effect of Initial pH and Saccharomyces cerevisiae addition on biogas production from acid-pretreated Salvinia molesta and kinetics. Energy, 207, 118226. https://doi.org/10.1016/j.energy.2020.118226

Tampio, E. A., Blasco, L., Vainio, M. M., Kahala, M. M., & Rasi, S. E. (2019). Volatile fatty acids (VFAs) and methane from food waste and cow slurry: comparison of biogas and VFA fermentation processes. Global Change Biology Bioenergy, 11(1), 72–84. https://doi.org/10.1111/gcbb.12556

Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., & Kunhikrishnan, A. (2013). Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 465(1), 72–96, https://doi.org/10.1016/j.scitotenv.2013.01.031

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3590. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Whittmann, C., Zeng, A. P., & Deckwer, W. D. (1995). Growth inhibition by ammonia and use of pH-controlled feeding strategy for effective cultivation of Mycobacterium chlorophenolicum. Applied Microbiology and Biotechnology, 44, 519–525. https://doi.org/10.1007/BF00169954

Yellezuome, D., Zhu, X., Wang, Z., & Liu, R. (2022). Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review. Renewable and Sustainable Energy Reviews, 157, 1–14. https://doi.org/10.1016/j.rser.2021.112043

Yan, X., Ying, Y., Li, K., Zhang, Q., & Wang, K. (2024). A review of mitigation technologies and management strategies for greenhouse gas and air pollutant emissions in livestock production. Journal of Environmental Management, 352, 1-12. https://doi.org/10.1016/j.jenvman.2024.120028

Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038

Authors

R. Purwasih
M. Saindah
H. Triyuwanti
F. S. Yusuf
A. Purnomoadi
E. Purbowati
S. Sutaryo
soeta@lecturer.undip.ac.id (Primary Contact)
Author Biography

R. Purwasih, Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University

The author is affiliated with the Department of Agroindustry, Subang State Polytechnic, Indonesia.

PurwasihR., SaindahM., TriyuwantiH., YusufF. S., PurnomoadiA., PurbowatiE., & SutaryoS. (2025). Optimizing Methane Production from Anaerobic Digestion of Dairy Cow Manure: The Potential Use of Carica (Carica pubescens) Seeds as a Co-Substrate. Tropical Animal Science Journal, 48(1), 37-44. https://doi.org/10.5398/tasj.2025.48.1.37

Article Details