Chemical and Physical Quality, Fermentation Characteristics, Aerobic Stability, and Ruminal Degradability of Sorghum Silage Inoculated with Lactiplantibacillus plantarum and Limosilactobacillus fermentum

D. Fitriani, M. Ardiansyah, A. Kurniawati, Z. Bachruddin, D. H. V. Paradhipta

Abstract

This study was carried out to determine the effect of homo (Lactiplantibacillus plantarum FNCC 0020) and hetero (Limosilactobacillus fermentum BN21) fermentative lactic acid bacteria on chemical compositions, fermentation characteristics, aerobic stability, and ruminal digestibility of sorghum (Sorghum bicolor L. Moench) silage. The sorghum forage was harvested at the milk ripening phase with a dry matter content of 25.6% and fermented for 100 days with different inoculants: treatments without inoculant (CON), L. plantarum (LP), L. fermentum (LF) as well as a mixture of LP and LF at a ratio of 1:1 (MIX). The experiment was conducted using a completely randomized design with 5 replications per treatment, and all inoculants were applied at 105 cfu/g of fresh forage. The results showed that LF silage caused a 66.3% reduction in cyanide acid content, the lowest mold count, and longer aerobic stability compared to LP and CON. The lowest pH (p<0.05) and highest organic matter digestibility (p<0.05) were obtained on LP silage, while the CON silage showed no significant difference. The LP and LF silage showed the highest total volatile fatty acid (p<0.05), while there was no significant between CON and others. The LF silage had the highest acetate and the lowest propionate (p<0.05). These results showed that L. fermentum was more effective in decreasing cyanide acid content and increasing the aerobic stability of sorghum silage, while L. plantarum was able to lower pH and reduce ammonia concentration.

References

Adeleke, B. S., O. Olaniyi, & B. J. Akinyele. 2017. Isolation and screening of bacteria associated with fermented cassava peels for linamarase production. Int. J. Appl. Microbiol. Biotechnol. Res. 5:20-26.

Andrada, E., A. Marquez, E. P. C. Dib, P. Gauffin-Cano, & R. B. Medina. 2023. Corn stover silage inoculated with ferulic acid esterase producing L. johnsonii, L. plantarum, L. fermentum, and L. brevis strains: Fermentative and nutritional parameters. Fermentation 9:331. https://doi.org/10.3390/fermentation9040331

Association of Official Analytical Chemists. 2005. Official Methods of Analysis, 18th ed. AOAC International: Washington DC, USA.

Astuti, D., B. Suhartanto, N. Umami, & A. Irawan. 2019. Productivity, nutrient composition, and hydrocyanic acid concentration of Super-2 forage sorghum at different NPK levels and planting spaces. Trop. Anim. Sci. J. 42:189-195. https://doi.org/10.5398/tasj.2019.42.3.189

Bangar, S. P., S. Suri, M. Trif, & F. Ozogul. 2022. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 46:101615. https://doi.org/10.1016/j.fbio.2022.101615

Bernardes, T. F., J. L. P. Daniel, A. T. Adesogan, T. A. McAllister, P. Drouin, L. G. Nussio, P. Huhtanen, G. F. Tremblay, G. Bélanger, & Y. Cai. 2018. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 101:4001–4019. https://doi.org/10.3168/jds.2017-13703

Chahrour, W., Y. Merzouk, J. E. Henni, M. Haddaji, & M. Kihal. 2013. Screening and identification of lactic acid bacteria isolated from sorghum silage processes in west Algeria. Afr. J. Biotechnol. 12:1703–1709.

Chaney, A. L. & E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130–132. https://doi.org/10.1093/clinchem/8.2.130

Chávez-González, M. L., L. V. Rodríguez-Duran, J. J. Buenrostro-Figueroa, L. Sepúlveda-Torre, J. A. Ascacio-Valdés, R. Rodríguez-Herrera, & C. N. Aguilar. 2018. Tannin Degrading Enzymes: Catalytic Properties and Technological Perspectives: Improvements and Innovations. In: Kuddus, M. (eds) Enzymes in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1933-4_7

Chotimah, Q., M. Nada, E. D. Rahayu, D. H. V. Paradhipta, H. L. Sanjaya, A. R. D. Wardani, & M. S. Anam. 2023. Effects of Achatina fulica mucus as an antimicrobial additive on chemical compositions, fermentation quality, and in vitro digestibility of elephant grass silage. Vet. Integr. Sci. 22:667-681. https://doi.org/10.12982/VIS.2024.045

Danner, H., M. Holzer, E. Mayrhuber, & R. Braun. 2003. Acetic acid icreases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 69:562-567. https://doi.org/10.1128/AEM.69.1.562-567.2003

Doyle, N., P. Mbandlwa, W. J. Kelly, G. Attwood, Y. Li, R. P. Ross, C. Stanton, S. Leahy, E. M. Hebert, & T. J. Snelling. 2019. Use of lactic acid bacteria to reduce methane production in ruminants, a critical review general characteristics of lactic acid. Front. Microbiol. 10:2207. https://doi.org/10.3389/fmicb.2019.02207

Fernandes, T., E. M. Paula, H. Sultana, & L. F. Ferraretto. 2020. Short communication : Influence of sorghum cultivar, ensiling storage length, and microbial inoculation on fermentation profile, N fractions, ruminal in situ starch disappearance and aerobic stability of whole-plant sorghum silage. Anim. Feed Sci. Technol. 266:114535. https://doi.org/10.1016/j.anifeedsci.2020.114535

Fukushima, A. R., M. A. Nicoletti, A. J. Rodrigues, C. Pressutti, J. Almeida, T. Brandão, R. K. Ito, L. A. B. Leoni, & H. D. S. Spinosa. 2016. Cassava flour : Quantification of cyanide content. Food. Nutr. Sci. 7:592-599. https://doi.org/10.4236/fns.2016.77060

Gang, G., S. Chen, L. Qiang, Z. Shuan-lin, S. Tao, W. Cong, W. Yong xin, X. Qing-fang, & H. Wen-jie. 2020. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. J. Integr. Agric. 19:838–847. https://doi.org/10.1016/S2095-3119(19)62707-3

Joo, Y. H., D. H. Kim, D. H. V. Paradhipta, H. J. Lee, S. M. Amanullah, S. B. Kim, J. S. Chang, & S. C. Kim. 2018. Effect of microbial inoculants on fermentation quality and aerobic stability of sweet potato vine silage. Asian-Australas. J. Anim. Sci. 31:1897–1902. https://doi.org/10.5713/ajas.18.0264

Khota, W., C. Kaewpila, R. Suwannasing, N. Srikacha, J. Maensathit, K. Ampaporn, P. Patarapreecha, S. Thip-uten, P. Sawnongbu, S. Subepang, K. Khanbu, & A. Cherdthong. 2023. Ensiling cyanide residue and in vitro rumen fermentation of cassava root silage treated with cyanide-utilizing bacteria and cellulase. Fermentation 9:151. https://doi.org/10.3390/fermentation9020151

Kung, L., R. D. Shaver, R. J. Grant, & R. J. Schmidt. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101:4020–4033. https://doi.org/10.3168/jds.2017-13909

Le, S., J. Josse, & F. Husson. 2014. Factominer: An R package for multivariate analysis. J. Stat. Softw. 25:1–18. https://doi.org/10.18637/jss.v025.i01

Li, Y., F. Wang, & N. Nishino. 2016. Lactic acid bacteria in total mixed ration silage containing soybean curd residue: Their isolation, identification and ability to inhibit aerobic deterioration. Asian-Australas. J. Anim. Sci. 29:516–522. https://doi.org/10.5713/ajas.15.0267

Liu, Y., T. Chen, R. Sun, X. Zi, & M. Li. 2022. Effects of Lactobacillus plantarum on silage fermentation and bacterial community of three tropical forages. Front. Anim. Sci. 3:878909. https://doi.org/10.3389/fanim.2022.878909

Makkar, H. P. S. 2003. Quantification of Tannins in Tree and Shrub Foliage : A Laboratory Manual. Kluwer Academic Publ. Netherlands. https://doi.org/10.1007/978-94-017-0273-7

Mccary, C. L., D. Vyas. A. P. Faciola, & L. F. Ferraretto. 2020. Graduate student literature review : Current perspectives on whole-plant sorghum silage production and utilization by lactating dairy cows. J. Dairy Sci. 103:5783–5790. https://doi.org/10.3168/jds.2019-18122

McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, & R. G. Wilkinson. 2011. Animal Nutrition. 7th Ed. Pearson. Canada.

Muck, R. E., E. M. G. Nadeau, T. A. McAllister, F. E. Contreras-Govea, M. C. Santos, & L. Kung Jr. 2018. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101:3980-4000. https://doi.org/10.3168/jds.2017-13839

Murugan, K., Yashotha, K. Sekar, & S. Al-Sohaibani. 2012. Detoxification of cyanides in cassava flour by linamarase of Bacillus subtilis KM05 isolated from cassava peel. Afr. J. Biotechnol. 11:7232-7237.

Nasyatul-Ekma, M. H., M. S. Rosly, A. M. Marini, Y. Nor-Idayusni, A. Hazirah. 2018. Lactic acid bacteria as microbial inoculant for Acacia mangium silage. Malaysian J. Anim. Sci. 21:91-97.

Nwokoro, O. 2016. Linamarase production by some microbial isolates and a comparison of the rate of degradation of cassava cyanide by microbial and cassava linamarases. Hem. Ind. 70:129–136. https://doi.org/10.2298/HEMIND141028021O

Paradhipta, D. H. V., Y. H. Joo, H. J. Lee, S. S. Lee, D. H. Kim, J. D. Kim, & S. C. Kim. 2019. Effects of inoculant application on fermentation quality and rumen digestibility of high moisture sorghum-sudangrass silage. J. Appl. Anim. Res 47:486–491. https://doi.org/10.1080/09712119.2019.1670667

Paradhipta, D. H. V., Y. H. Joo, H. J. Lee, S. S. Lee, H. T. Noh, J. S. Choi, J. Kim, H. G. Min, & S. C. Kim. 2021. Effects of inoculants producing antifungal and carboxylesterase activities on corn silage and its shelf life against mold contamination at feed-out phase. Microorganisms 9:558. https://doi.org/10.3390/microorganisms9030558

Paradhipta, D. H. V., S. S. Lee, B. Kang, Y. H. Joo, H. J. Lee, Y. Lee, J. Kim, & S. C. Kim. 2020. Dual-purpose inoculants and their effects on corn silage. Microorganisms 8:765. https://doi.org/10.3390/microorganisms8050765

Pinto, S., J. F. G. Warth, C. O. Novinski, & P. Schmidt. 2020. Effects of natamycin and Lactobacillus buchneri on the fermentative process and aerobic stability of maize silage. J. Anim. Feed. Sci. 82–89. https://doi.org/10.22358/jafs/118179/2020

Reuter, W. M., I. P. Elmer, & C. T. Shelton. 2015. The Analysis of a Broad Range of Organic Acids by HPLC with UV Detection. PerkinElmer, Inc. USA.

Si, H., H. Liu, Z. Li, W. Nan, C. Jin, Y. Sui, & G. Li. 2018. Effect of Lactobacillus plantarum and Lactobacillus buchneri addition on fermentation, bacterial community and aerobic stability in lucerne silage. Anim. Prod. Sci. 59:1528-1536. https://doi.org/10.1071/AN16008

Steel, R. G. D. & J. H. Torrie. 1993. Prinsip dan Prosedur Statistika. Suatu Pendekatan Biometrik. PT. Gramedia Pustaka Utama, Jakarta.

Steel, R. G. D., J. H. Torrie, & D. A. Dicky. 1997. Principles and Procedures of Statistics, A Biometrical Approach. 3rd Ed. McGraw Hill, Inc. Book Co., New York

Trisnadewi, A. A. A. S. & I. G. L. O. Cakra. 2020. Physical characteristics, nutritional qualities and in vitro digestibility of silage from various sources of fiber. Pak. J. Nutr. 19:166–171. https://doi.org/10.3923/pjn.2020.166.171

Tilley, J. M. A. & R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci.18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Vargas, J. A. C., T. C. de Araujo, & R. Mezzomo. 2020. A protocol for the extraction, identification, and quantification of short-chain fatty acids (SCFAs) in silages using Reverse Phase – High Performance Liquid Chromatography with Diode Array Detector (RP-HPLC-DAD). PROTOCOL (Version 1) available at Protocol Exchange [https://doi.org/10.21203/rs.3.pex-1170/v1] [October 1, 2020].

Wang, Yi, C. Wang, W. Zhou, F. Yang, X. Chen, & Q. Zhang. 2018. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of Moringa oleifera leaf silage. Front. Microbiol. 9:1817. https://doi.org/10.3389/fmicb.2018.01817

Zhang, S. J., A. S. Chaudhry, D. Ramdani, A. Osman, G. Xue-feng, G. R. Edwards, & L. Cheng. 2016. Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin, China. J. Integr. Agric. 15:175–182. https://doi.org/10.1016/S2095-3119(14)60939-4

Zhao, J., X. Yin, S. Wang, & J. Li. 2022. Changes in the fermentation products, taxonomic and functional profiles of microbiota during high-moisture sweet sorghum silage fermentation. Front. Microbiol. 13:967624. https://doi.org/10.3389/fmicb.2022.967624

Zi, X., M. Li, Y. Chen, R. Lv, H. Zhou, & J. Tang. 2021. Effects of citric acid and Lactobacillus plantarum on silage quality and bacterial diversity of king grass silage. Front. Microbiol. 12:631096. https://doi.org/10.3389/fmicb.2021.631096

Zielińska, K. & A. Fabiszewska. 2018. Improvement of the quality of maize grain silage by a synergistic action of selected lactobacilli strains. World J. Microbiol. Biotechnol. 34:1–8. https://doi.org/10.1007/s11274-017-2400-9

Authors

D. Fitriani
M. Ardiansyah
A. Kurniawati
Z. Bachruddin
D. H. V. Paradhipta
dimas.hvp@ugm.ac.id (Primary Contact)
FitrianiD., ArdiansyahM., KurniawatiA., BachruddinZ., & ParadhiptaD. H. V. (2024). Chemical and Physical Quality, Fermentation Characteristics, Aerobic Stability, and Ruminal Degradability of Sorghum Silage Inoculated with Lactiplantibacillus plantarum and Limosilactobacillus fermentum. Tropical Animal Science Journal, 47(4), 483-492. https://doi.org/10.5398/tasj.2024.47.4.483

Article Details