Evaluating Physicochemical Properties of Whey-Chia Seed Edible Films for Biodegradable Packaging

F. Fahrullah, A. Noersidiq, D. Kisworo, F. Maruddin

Abstract

The use of whey-chia seed edible films can help reduce environmental pollution while preserving the quality of food products. Films were produced using varying ratios of whey to chia seed (v/w) (whey-chia seed ratio of 1:0.5 (W1), 1:0.75 (W2), and 1:1 (W3)) through a completely randomized design with three treatments and six replications. The results showed significant differences (p<0.01) in elongation, tensile strength, moisture content, solubility, and color properties, except for crude fiber content (p>0.05). As the whey:chia seed ratio increased to 1:1, elongation increased up to 76.77%, while tensile strength decreased to 3.876 MPa, indicating an inverse relationship between these properties. The film with a whey:chia seed ratio of 1:0.5 showed 71.08% elongation but higher tensile strength (4.306 MPa) compared to the W3 treatment. The whey:chia seed ratio of 1:1 chia seed film also had the highest moisture content (49.52%), solubility (53.69%), and fiber content (15.67%). Increasing the ratio of chia seed resulted in a brighter and more transparent appearance. The microstructure of the film was continuous, compact, and homogeneous, without any irregularities such as cracks or air bubbles. The study concluded that chia seeds enhance the physicochemical and mechanical properties of whey-based edible films, with the optimal film produced at a 1:1 whey-chia seed ratio.

References

Abdelhedi, O., R. Nasri, L. Mora, M. Jridi, F. Toldrá, & M. Nasri. 2018. In silico analysis and molecular docking study of angiotensin I-converting enzyme inhibitory peptides from smooth-hound viscera protein hydrolysates fractionated by ultrafiltration. Food Chem. 239:453-463. https://doi.org/10.1016/j.foodchem.2017.06.112

Adamu, A. D., S. S. Jikan, B. A. Talip, N. A. Badarulzaman, & S. Yahaya. 2017. Effect of glycerol on the properties of tapioca starch film. Materials Sci. Forum. 888:239-243. https://doi.org/10.4028/www.scientific.net/MSF.888.239

AOAC. 2005. Official Methods of Analysis, 18th ed, Assoc. Off. Anal. Chem. AOAC International, USA.

AOAC. 2007. Official Methods of Analysis, 18th ed, 2005; Current through Revision 2, 2007, Assoc. Off. Anal. Chem. AOAC International, USA.

Aleksanyan, K. V. 2023. Polysaccharides for biodegradable packaging materials: Past, present, and future (Brief Review). Polymers 15:451. https://doi.org/10.3390/polym15020451

Azevedo, V. M., E. K. Silva, C. F. G. Pereira, J. M. G da Costa, & S. V. Borges. 2015. Whey protein isolate biodegradable films: Influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocoll 43:252-258. https://doi.org/10.1016/j.foodhyd.2014.05.027

Capitani, M. I., A. Matus-Basto, J. C. Ruiz-Ruiz, J. L. Santiago-García, D. A. Betancur-Ancona, S. M. Nolasco, M. C. Tomás, & M. R. Segura-Campos. 2016. Characterization of biodegradable films based on Salvia hispanica L. protein and mucilage. Food Bioproc. Tech. 9:1276–1286. https://doi.org/10.1007/s11947-016-1717-y

Charles-Rodríguez, A. V., L. L. Rivera-Solís, J. T. Martins, Z. Genisheva, A. Robledo-Olivo, S. González-Morales, G. López-Guarin, D. G. Martínez-Vázquez, D. A. A. Vicente, & M. L. Flores-López. 2020. Edible films based on black chia (Salvia hispanica L.) seed mucilage containing rhus microphylla fruit phenolic extract. Coatings 10:326. https://doi.org/10.3390/coatings10040326

Chaves, M. A., J. Piati, L. T. Malacarne, R. E. Gall, E. Colla, P. R. S. Bittencourt, A. H. P. de Souza, S. T. M. Gomes, & M. Matsushita. 2018. Extraction and application of chia mucilage (Salvia hispanica L.) and locust bean gum (Ceratonia siliqua L.) in goat milk frozen dessert. J. Food Sci. Technol. 55:4148-4158. https://doi.org/10.1007/s13197-018-3344-2

Chollakup, R., S. Pongburoos, W. Boonsong, N. Khanoonkon, K. Kongsin, R. Sothornvit, P. Sukyai, U. Sukatta, & N. Harnkarnsujarit. 2020. Antioxidant and antibacterial activities of cassava starch and whey protein blend films containing rambutan peel extract and cinnamon oil for active packaging. LWT Food Science Technology 130:109573. https://doi.org/10.1016/j.lwt.2020.109573

Chiumarelli, M. & M. D. Hubinger. 2014. Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocoll 38:20-27. https://doi.org/10.1016/j.foodhyd.2013.11.013

Cinelli, P., M. Schmid, F. Bugnicourt, J. Wildner, A. Bazzichi, I. Anguillesi, A. Lazzeri. 2014. Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym. Degrad. Stab. 108:151-157. https://doi.org/10.1016/j.polymdegradstab.2014.07.007

Cofelice, M., F. Cuomo, & A. Chiralt. 2019. Alginate films encapsulating lemongrass essential oil as affected by spray calcium application. Colloids Interfaces 3:58. https://doi.org/10.3390/colloids3030058

Cuomo, F., S. Iacovino, M. C. Messia, P. Sacco, & F. Lopez. 2020. Protective action of lemongrass essential oil on mucilage from chia (Salvia hispanica) seeds. Food Hydrocoll 105:105860. https://doi.org/10.1016/j.foodhyd.2020.105860

Dick, M., T. M. H. Costa, A. Gomaa, M. Subirade, A. D. O. Rios, & S. H. Flôres. 2015. Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr. Polym. 130:198-205. https://doi.org/10.1016/j.carbpol.2015.05.040

Dick, M., C. H. Pagno, T. M. H. Costa, A. Gomaa, M. Subirade, A. de O. Rios, & S. H. Flôres. 2016. Edible films based on chia flour: Development and characterization. J. Appl. Polym. Sci. 133:42455. https://doi.org/10.1002/app.42455

Ding, Y., H. W. Lin, Y. L. Lin, D. J. Yang, Y. S. Yu, J. W. Chen, S. Y. Wang, & Y. C. Chen. 2018. Nutritional composition in the chia seed and its processing properties on restructured ham-like products. J. Food Drug Anal. 26:124-134. https://doi.org/10.1016/j.jfda.2016.12.012

Edhirej, A., S. M. Sapuan, M. Jawaid, & N. I. Zahari. 2017. Effect of various plasticizers and concentration on the physical, thermal, mechanical, and structural properties of cassava-starch-based films. Starch/Staerke 69:1500366. https://doi.org/10.1002/star.201500366

Fahrullah, F., L. E. Radiati, P. Purwadi, & D. Rosyidi. 2020. The physical characteristics of whey based edible film added with konjac. Curr. Res. Nutr. Food Sci. 8:333-339. https://doi.org/10.12944/CRNFSJ.8.1.31

Fahrullah, F., M. Ervandi, & D. Rosyidi. 2021. Characterization and antimicrobial activity of whey edible film composite enriched with clove essential oil. Trop. Anim. Sci. J. 44:369-376. https://doi.org/10.5398/tasj.2021.44.3.369

Fahrullah, F., A. Noersidiq, & F. Maruddin. 2022. Effects of glycerol plasticizer on physical characteristic of whey-konjac films enriched with clove essential oil. J. Food Qual. Hazards Control 9:226–233. https://doi.org/10.18502/jfqhc.9.4.11377

Farhan, A. & N. M. Hani. 2017. Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocoll 64:48-58. https://doi.org/10.1016/j.foodhyd.2016.10.034

Fernandes, S. S., V. P. Romani, G. S. Filipini, & V. G. Martins. 2020. Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability. Polym. Eng. Sci. 60:2214-2223. https://doi.org/10.1002/pen.25464

Gontard, N., S. Iacovino, M. C. Messia, P. Sacco, & F. Lopez. 1994. Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Int. J. Food Sci. Technol. 29:39-50. https://doi.org/10.1111/j.1365-2621.1994.tb02045.x

Hasheminya, S. M., R. R. Mokarram, B. Ghanbarzadeh, H. Hamishekar, H. S. Kafil, & J. Dehghannya. 2019. Development and characterization of biocomposite films made from kefiran, carboxymethyl cellulose and Satureja Khuzestanica essential oil. Food Chem. 289:443-452. https://doi.org/10.1016/j.foodchem.2019.03.076

Hassan, B., S. A. S. Chatha, A, I, Hussain, K. M. Zia, & N. Akhtar. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 109:1095-1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

Hmmam, I., M. A. S. Ali, & A. Abdellatif. 2023. Alginate-based zinc oxide nanoparticles coating extends storage life and maintains quality parameters of mango fruits “cv. Kiett”. Coatings 13:362. https://doi.org/10.3390/coatings13020362

Hrnčič, M. K., M. Ivanovski, D. Cör, & Ž. Knez. 2020. Chia seeds (Salvia hispanica L.): An overview-phytochemical profile, isolation methods, and application. Molecules 25:11. https://doi.org/10.3390/molecules25010011

Hu, G., D. Wang, L. Sun, R. Su, M. Corazzin, X. Sun, L. Dou, M. Zhang, L. Zhao, L. Su, & Y. Jin. 2022. Isolation, purification and structure identification of a calcium-binding peptide from sheep bone protein hydrolysate. Foods 11:2655. https://doi.org/10.3390/foods11172655

Jaderi, Z., F. T. Yazdi, S. A. Mortazavi, & A. Koocheki. 2023. Effects of glycerol and sorbitol on a novel biodegradable edible film based on Malva sylvestris flower gum. Food Sci. Nutr. 11:991-1000. https://doi.org/10.1002/fsn3.3134

Janik, M., K. Khachatryan, G. Khachatryan, M. Krystyjan, & Z. Oszczęda. 2023. Comparison of physicochemical properties of silver and gold nanocomposites based on potato starch in distilled and cold plasma-treated water. Int. J. Mol. Sci. 24:2200. https://doi.org/10.3390/ijms24032200

Jouki, M., S. A. Mortazavi, F. T. Yazdi, & A. Koocheki. 2014. Characterization of antioxidant-antibacterial quince seed mucilage films containing thyme essential oil. Carbohydr. Polym. 99:537-546. https://doi.org/10.1016/j.carbpol.2013.08.077

Khazaei, N., M. Esmaiili, Z. E. Djomeh, M. Ghasemlou, & M. Jouki. 2014. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr. Polym. 102:199-206. https://doi.org/10.1016/j.carbpol.2013.10.062

Khodaman, E., H. Barzegar, A. Jokar, & H. Jooyandeh. 2022. Production and evaluation of physicochemical, mechanical and antimicrobial properties of chia (Salvia hispanica L.) mucilage-gelatin based edible films incorporated with chitosan nanoparticles. Journal Food Measurement Characterization 16:3547–3556. https://doi.org/10.1007/s11694-022-01470-7

Li, L., J. Yan, B. Lai, C. Wang, J. Sun, & H. Wu. 2023. Rheological properties of chia seed gum extracted by high-speed shearing and its comparison with commercial polysaccharides. Food Hydrocoll. 144:108936. https://doi.org/10.1016/j.foodhyd.2023.108936

Maniglia, B. C., R. L. de Paula, J. R. Domingos, & D. R. Tapia-Blácido. 2015. Turmeric dye extraction residue for use in bioactive film production: Optimization of turmeric film plasticized with glycerol. LWT Food Science Technology 64:1187-1195. https://doi.org/10.1016/j.lwt.2015.07.025

Mellinas, C., A. Valdés, M. Ramos, N. Burgos, M. C. Garrigós, & A. Jiménez. 2016. Active edible films: Current state and future trends. J. Appl. Polym. Sci. 133:133. https://doi.org/10.1002/app.42631

Mihalca, V., A. D. Kerezsi, A. Weber, C. Gruber‐Traub, J. Schmucker, D. C. Vodnar, F. V. Dulf., S. A. Socaci, A. Fărcaș, C. I. Mureșan, R. Suharoschi, & O. L. Pop. 2021. Protein‐based films and coatings for food industry applications. Polymers 13:769. https://doi.org/10.3390/polym13050769

Muñoz-Tebar, N., A. Molina, M. Carmona, & M. I. Berruga. 2021. Use of chia by-products obtained from the extraction of seeds oil for the development of new biodegradable films for the agri-food industry. Foods 10:620. https://doi.org/10.3390/foods10030620

Muñoz‐Tébar, N., M. Carmona, G. O. de Elguea‐Culebras, A. Molina, & M. I. Berruga. 2022. Chia seed mucilage edible films with origanum vulgare and satureja montana essential oils: Characterization and antifungal properties. Membranes 12:213. https://doi.org/10.3390/membranes12020213

Nehra, A., D. Biswas, V. Siracusa, & S. Roy. 2023. Natural gum-based functional bioactive films and coatings: A Review. Int. J. Mol. Sci. 24:485. https://doi.org/10.3390/ijms24010485

Newbury, D. E. & N. W. M. Ritchie. 2015. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J. Mater. Sci. 50:493-518. https://doi.org/10.1007/s10853-014-8685-2

Nor Adilah, A., B. Jamilah, M. A. Noranizan, & Z. A. Nur Hanani. 2018. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag. Shelf Life 16:1-7. https://doi.org/10.1016/j.fpsl.2018.01.006

Otoni, C. G., R. J. Avena-Bustillos, H. M. C. Azeredo, M. V. Lorevice, M. R. Moura, L. H. C. Mattoso, & T. H. McHugh. 2017. Recent advances on edible films based on fruits and vegetables-A Review. Compr. Rev. Food Sci. Food Saf. 16:1151-1169. https://doi.org/10.1111/1541-4337.12281

Pak, E. S., S. N. Ghaghelestani, & M. A. Najafi. 2020. Preparation and characterization of a new edible film based on Persian gum with glycerol plasticizer. J. Food Sci. Technol. 57:3284–3294. https://doi.org/10.1007/s13197-020-04361-1

Sanyang, M. L., S. M. Sapuan, M. Jawaid, M. R. Ishak, & J. Sahari. 2016. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Sci. Technol. 53:326-336. https://doi.org/10.1007/s13197-015-2009-7

Schmid, M. 2013. Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein isolate and glycerol. Materials 6:3254-3269. https://doi.org/10.3390/ma6083254

Silva, R. S., B. M. M. Santos, G. G. Fonseca, C. Prentice, & W. R. Cortez-Vega. 2020. Analysis of hybrid sorubim protein films incorporated with glycerol and clove essential oil for packaging applications. J. Polym. Environ. 28:421–432. https://doi.org/10.1007/s10924-019-01608-7

Soukoulis, C., C. Gaiani, & L. Hoffmann. 2018. Plant seed mucilage as emerging biopolymer in food industry applications. Curr. Opinion Food Sci. 22:28-42. https://doi.org/10.1016/j.cofs.2018.01.004

Spotti, M. L., J. P. Cecchini, M. J. Spotti, & C. R. Carrara. 2016. Brea gum (from Cercidium praecox) as a structural support for emulsion-based edible films. LWT Food Science Technology 68:127-134. https://doi.org/10.1016/j.lwt.2015.12.018

Stanisławska, N., G. Khachatryan, K. Khachatryan, M. Krystyjan, M. Makarewicz, & M. Krzan. 2023. Formation and investigation of physicochemical and microbiological properties of biocomposite films containing turmeric extract nano/microcapsules. Polymers 15:919. https://doi.org/10.3390/polym15040919

Steffolani, E., M. M. Martinez, A. E. León, & M. Gómez. 2015. Effect of pre-hydration of chia (Salvia hispanica L.), seeds and flour on the quality of wheat flour breads. LWT Food Science Technology 61:401-406. https://doi.org/10.1016/j.lwt.2014.12.056

Sukhija, S., S. Singh, & C. S. Riar. 2016. Analyzing the effect of whey protein concentrate and psyllium husk on various characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch. Food Hydrocoll. 60:128-137. https://doi.org/10.1016/j.foodhyd.2016.03.023

Teixeira, B., A. Marques, C. Pires, C. Ramos, I. Batista, J. A. Saraiva, & M. L. Nunes. 2014. Characterization of fish protein films incorporated with essential oils of clove, garlic and origanum: Physical, antioxidant and antibacterial properties. LWT Food Science Technology 59:533-539. https://doi.org/10.1016/j.lwt.2014.04.024

Timilsena, Y. P., R. Adhikari, S. Kasapis, & B. Adhikari. 2015. Rheological and microstructural properties of the chia seed polysaccharide. Int. J. Biol. Macromol. 81:991-999. https://doi.org/10.1016/j.ijbiomac.2015.09.040

Vega, I. M. S., P. Q. Owen, & M. R. S. Campos. 2020. Physicochemical, thermal, mechanical, optical, and barrier characterization of chia (Salvia hispanica L.) mucilage-protein concentrate biodegradable films. J. Food Sci. 85:892-902. https://doi.org/10.1111/1750-3841.14962

Wittaya, T. 2013. Influence of type and concentration of plasticizers on the properties of edible film from mung bean proteins. KMITL Sci, Technol. J. 13:51-58.

Yi, T., K. Wang, Z. Zhuang, S. Pan, & X. Huang. 2014. Comparative analysis of dietary fibre extract isolated from citrus juice by-products using water extraction, fermentation and enzymatic treatment methods. Adv. J. Food Sci. Technol. 6:1058-1066. https://doi.org/10.19026/ajfst.6.160

Zettel, V. & B. Hitzmann. 2018. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci. Technol. 80:43-50. https://doi.org/10.1016/j.tifs.2018.07.011

Authors

F. Fahrullah
fahrullah@unram.ac.id (Primary Contact)
A. Noersidiq
D. Kisworo
F. Maruddin
FahrullahF., NoersidiqA., KisworoD., & MaruddinF. (2024). Evaluating Physicochemical Properties of Whey-Chia Seed Edible Films for Biodegradable Packaging . Tropical Animal Science Journal, 47(4), 519-528. https://doi.org/10.5398/tasj.2024.47.4.519

Article Details